已知函數(shù)f(x)=sinωx+cosωx,如果存在實數(shù)x1,使得對任意的實數(shù)x,都有f(x1)≤f(x)≤f(x1+2010)成立,則ω的最小值為( 。
A、
1
2010
B、
π
2010
C、
1
4020
D、
π
4020
考點:三角函數(shù)的最值
專題:三角函數(shù)的求值
分析:顯然要使結論成立,只需保證區(qū)間[x1,x1+2010]能夠包含函數(shù)的至少一個完整的單調區(qū)間即可,又f(x)=
2
sin(ωx+
π
4
),則2010≥
1
2
ω
,由此求得ω的最小值.
解答: 解:顯然要使結論成立,只需保證區(qū)間[x1,x1+2010]能夠包含函數(shù)的至少一個完整的單調區(qū)間即可,
又f(x)=sinωx+cosωx=
2
sin(ωx+
π
4
),則2010≥
1
2
ω
,∴ω≥
π
2010
,
則ω的最小值為
π
2010
,
故選:B.
點評:本題主要考查兩角和的正弦公式,正弦函數(shù)的單調性和周期性,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若橢圓的中心在原點,一個焦點為(0,2),直線y=3x+7與橢圓相交所得弦的中點的縱坐標為1,則這個橢圓的方程為( 。
A、
x2
12
+
y2
20
=1
B、
x2
4
+
y2
12
=1
C、
x2
12
+
y2
8
=1
D、
x2
8
+
y2
12
=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

分別以直角三角形的斜邊和兩直角邊所在直線為軸,將三角形旋轉一周所得旋轉體的體積依次為V1、V2、V3,則(  )
A、V1=V2+V3
B、V12=V22+V32
C、
1
V12
=
1
V22
+
1
V32
D、
1
V1
=
1
V2
+
1
V3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=cos2x+sinx,x∈[-
π
4
,
π
4
]的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=x2在下列哪個區(qū)間存在零點( 。
A、(-3,-1)
B、(-1,2)
C、(2,3)
D、(3,4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列各選項中,正確的是(  )
A、若p∨q為真命題,則p∧q為真命題
B、命題“若x<-1,則x2-2x-3>0”的否命題為“若x<-1,則x2-2x-3≤0”
C、已知命題p:?x∈R使x2+x-1<0,則?p為:?x∈R使得x2+x-1≥0
D、設
a
,
b
是任意兩個向量,則“
a
b
=|
a
||
b
|”是“
a
b
”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=sin2x的圖象向左平移
π
4
個單位,得到函數(shù)y=f(x)的圖象,則下列說法正確的是( 。
A、y=f(x)是奇函數(shù)
B、y=f(x)的周期為2π
C、y=f(x)的圖象關于x=
π
2
對稱
D、y=f(x)的圖象關于點(
π
2
,0)
對稱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知曲線C:x2+y2-2x-4y+m=0
(1)當m為何值時,曲線C表示圓;
(2)在(1)的條件下,設直線x-y-1=0與圓C交于A,B兩點,是否存在實數(shù)m,使得以AB為直徑的圓過原點,若存在,求出實數(shù)m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知實數(shù)x、y滿足線性約束條件
x≥y
x+y-1≤0
y≥0
則目標函數(shù)z=2x-y-1的最大值是
 

查看答案和解析>>

同步練習冊答案