5.已知橢圓具有如下性質(zhì):若橢圓的方程為$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),則橢圓上一點(diǎn)A(x0,y0)處的切線(xiàn)方程為$\frac{{{x_0}x}}{a^2}+\frac{{{y_0}y}}{b^2}$=1,試運(yùn)用該性質(zhì)解決以下問(wèn)題:橢圓C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),其焦距為2,且過(guò)點(diǎn)$(1,\frac{{\sqrt{2}}}{2})$.點(diǎn)B為橢圓C1在第一象限中的任意一點(diǎn),過(guò)B作C1的切線(xiàn)l,l分別與x軸和y軸的正半軸交于C,D兩點(diǎn),則△OCD面積的最小值為$\sqrt{2}$.

分析 依題意得:橢圓的焦點(diǎn)為F1(-1,0),F(xiàn)2(1,0),可得c=1,代入點(diǎn)$(1,\frac{{\sqrt{2}}}{2})$.計(jì)算即可求出a,b,從而可求橢圓C1的方程;設(shè)B(x2,y2),求得橢圓C1在點(diǎn)B處的切線(xiàn)方程,分別令x=0,y=0,求得截距,由三角形的面積公式,再結(jié)合基本不等式,即可求△OCD面積的最小值.

解答 解:由橢圓C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),可知焦點(diǎn)在x軸,2c=2,即c=1,
∴a2-b2=1,代入點(diǎn)$(1,\frac{{\sqrt{2}}}{2})$,可得$\frac{1}{^{2}+1}+\frac{1}{2^{2}}=1$,解得:b=1,則a2=2
即有橢圓的方程:$\frac{{x}^{2}}{2}$+y2=1,
設(shè)B(x2,y2),
則橢圓C1在點(diǎn)B處的切線(xiàn)方程為:$\frac{{x}_{2}}{2}$x+y2y=1
令x=0,yD=$\frac{1}{{y}_{2}}$,令y=0,可得xC=$\frac{2}{{x}_{2}}$,
∴S△OCD=$\frac{1}{2}$•$\frac{1}{{y}_{2}}$•$\frac{2}{{x}_{2}}$=$\frac{{x}_{2}^{2}}{2}$,
又點(diǎn)B在橢圓的第一象限上,
∴x2>0,y2>0,$\frac{{x}_{2}^{2}}{2}$+y22=1,
即有$\frac{1}{{x}_{2}{y}_{2}}$=$\frac{\frac{{x}_{2}^{2}}{2}+{y}_{2}^{2}}{{x}_{2}{y}_{2}}$=$\frac{{x}_{2}}{2{y}_{2}}$+$\frac{{y}_{2}}{{x}_{2}}$≥2$\sqrt{\frac{{x}_{2}}{2{y}_{2}}•\frac{{y}_{2}}{{x}_{2}}}$=$\sqrt{2}$,
∴S△OCD≥$\sqrt{2}$,當(dāng)且僅當(dāng)$\frac{{x}_{2}^{2}}{2}$=y22=$\frac{1}{2}$時(shí),取最小值,
∴當(dāng)B(1,$\frac{\sqrt{2}}{2}$)時(shí),三角形OCD的面積的最小值為$\sqrt{2}$.
故答案為:$\sqrt{2}$.

點(diǎn)評(píng) 本題考查橢圓的標(biāo)準(zhǔn)方程的求法,考查直線(xiàn)與橢圓的位置關(guān)系,考查三角形面積的最值的求法,基本不等式的性質(zhì),橢圓切線(xiàn)方程的應(yīng)用,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.設(shè)x>0,y>0,A、B、P三點(diǎn)共線(xiàn)且向量$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,則$\frac{1}{x}$+$\frac{4}{y}$的最小值(  )
A.4B.2C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)P為△ABC所在平面內(nèi)一點(diǎn),且2$\overrightarrow{PA}$+2$\overrightarrow{PB}$+$\overrightarrow{PC}$=$\overrightarrow{0}$,則△PAC的面積與△ABC的面積之比等于( 。
A.$\frac{1}{4}$B.$\frac{2}{5}$C.$\frac{1}{5}$D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知集合A={x|m+1≤x≤2m-1},B={x|x<-2或x>5}
(1)若A⊆B,求實(shí)數(shù)m的取值范圍的集合;
(2)若A∩B=∅,求實(shí)數(shù)m的取值范圍的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知$\frac{{cos({π-2α})}}{{sin({α-\frac{π}{4}})}}=-\frac{{\sqrt{2}}}{2}$,則-(cosα+sinα)等于( 。
A.$-\frac{{\sqrt{7}}}{2}$B.$\frac{{\sqrt{7}}}{2}$C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知等差數(shù)列{an}的前n項(xiàng)和Sn滿(mǎn)足S3=0,S5=-5.
(1)求{an}的通項(xiàng)公式;
(2)求a1+a4+a7+…+a3n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.若函數(shù)f(x)=x2-bx+3.
(1)若函數(shù)f(x)為R上的偶函數(shù),求b的值.
(2)若函數(shù)f(x)在(-∞,2]上單調(diào)遞減,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=|2x-1|+a|x-1|
(I)當(dāng)a=1時(shí),解關(guān)于x的不等式f(x)≥4
(II)若f(x)≥|x-2|的解集包含[$\frac{1}{2}$,2],求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知數(shù)列f(x1),f(x2),…f(xn),…是公差為2的等差數(shù)列,且x1=a2其中函數(shù)f(x)=logax(a為常數(shù)且a>0,a≠1).
(Ⅰ)求數(shù)列{xn}的通項(xiàng)公式;
(Ⅱ)若an=logaxn,求證$\frac{4}{{a}_{1}{a}_{2}}$+$\frac{4}{{a}_{2}{a}_{3}}$+…+$\frac{4}{{a}_{n}{a}_{n+1}}$<1.

查看答案和解析>>

同步練習(xí)冊(cè)答案