分析 (1)根據(jù)等差數(shù)列的定義與通項(xiàng)公式,列出方程求出公差d與首項(xiàng)a1,即可寫出通項(xiàng)公式;
(2)令通項(xiàng)公式an=161,求出n的值,即可判斷161是否為數(shù)列{an}中的項(xiàng).
解答 解:(1)等差數(shù)列{an}中,
a12=11,a45=110,
∴(45-12)d=110-11,
解得d=3;
∴a1=a12-11d=11-11×3=-22,
∴通項(xiàng)公式為
an=a1+(n-1)d=-22+3(n-1);
(2)令an=-22+3(n-1)=161,
解得n=62;
∴161是數(shù)列{an}中的項(xiàng),且是第62項(xiàng).
點(diǎn)評 本題考查了等差數(shù)列的通項(xiàng)公式與應(yīng)用問題,根據(jù)已知條件求出等差數(shù)列的通項(xiàng)公式,是解題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [$\frac{\sqrt{5}}{5}$,+∞) | B. | [$\sqrt{2}$,+∞) | C. | [$\frac{\sqrt{5}}{5}$,1] | D. | [1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 0或1 | D. | 無數(shù)個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{5}}{2}$ | B. | $\sqrt{2}$ | C. | 2$\sqrt{2}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>c>b | B. | a>b>c | C. | c>a>b | D. | c>b>a |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com