【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,已知點(diǎn),以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立坐標(biāo)系,曲線的極坐標(biāo)方程為,過點(diǎn)作極坐標(biāo)方程為的直線的平行線,分別交曲線于兩點(diǎn).
(1)寫出曲線和直線的直角坐標(biāo)方程;
(2)若成等比數(shù)列,求的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)在橢圓上,且橢圓的離心率為.
(1)求橢圓的方程;
(2)若為橢圓的右頂點(diǎn),點(diǎn)是橢圓上不同的兩點(diǎn)(均異于)且滿足直線與斜率之積為.試判斷直線是否過定點(diǎn),若是,求出定點(diǎn)坐標(biāo),若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2018屆高三·湖南十校聯(lián)考)已知函數(shù)f(x)=x+sin x(x∈R),且f(y2-2y+3)+f(x2-4x+1)≤0,則當(dāng)y≥1時(shí), 的取值范圍是( )
A. B.
C. [1,3-3] D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線 的焦點(diǎn)為,過拋物線上的動(dòng)點(diǎn)(除頂點(diǎn)外)作的切線交軸于點(diǎn).過點(diǎn)作直線的垂線(垂足為)與直線交于點(diǎn).
(Ⅰ)求焦點(diǎn)的坐標(biāo);
(Ⅱ)求證:;
(Ⅲ)求線段的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列滿足,數(shù)列的前項(xiàng)和為,且滿足.
(1)求數(shù)列和的通項(xiàng)公式;
(2)數(shù)列滿足,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系.曲線的極坐標(biāo)方程為,曲線的參數(shù)方程為(為參數(shù))
(1)求曲線的直角坐標(biāo)方程及曲線的極坐標(biāo)方程;
(2)當(dāng)()時(shí)在曲線上對(duì)應(yīng)的點(diǎn)為,若的面積為,求點(diǎn)的極坐標(biāo),并判斷是否在曲線上(其中點(diǎn)為半圓的圓心)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列的首項(xiàng)為,公差為,等比數(shù)列的首項(xiàng)為,公比為.
(Ⅰ)若數(shù)列的前項(xiàng)和,求, 的值;
(Ⅱ)若, ,且.
(i)求的值;
(ii)對(duì)于數(shù)列和,滿足關(guān)系式, 為常數(shù),且,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是由個(gè)實(shí)數(shù)組成的行列的數(shù)表,滿足:每個(gè)數(shù)的絕對(duì)值不大于,且所有數(shù)的和為零,記為所有這樣的數(shù)表組成的集合,對(duì)于,記為的第行各數(shù)之和(剟 ),為的第列各數(shù)之和(剟),記為, , , , , , , 中的最小值.
()對(duì)如下數(shù)表,求的值.
()設(shè)數(shù)表形如:
求的最大值.
()給定正整數(shù),對(duì)于所有的,求的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com