橢圓的左焦點(diǎn)為,直線與橢圓相交于點(diǎn)、,當(dāng)的周長最大時(shí),的面積是____________.
解析試題分析:設(shè)橢圓的右焦點(diǎn)為E.如圖:
由橢圓的定義得:△FAB的周長:AB+AF+BF=AB+(4a-AE)+(4a-BE)=8a+AB-AE-BE;
∵AE+BE≥AB;
∴AB-AE-BE≤0,當(dāng)AB過點(diǎn)E時(shí)取等號(hào);
∴AB+AF+BF=8a+AB-AE-BE≤8a;
即直線x=m過橢圓的右焦點(diǎn)E時(shí)△FAB的周長最大;
此時(shí)△FAB的高為:EF=2a.
此時(shí)直線x=m=c=a;
把x=a代入橢圓
的方程得:y=±.
∴AB=3a.
所以:△FAB的面積等于:S△FAB=×3a×2a=.
考點(diǎn):本題主要考查橢圓的幾何性質(zhì),直線與橢圓的位置關(guān)系.
點(diǎn)評(píng):在解決涉及到圓錐曲線上的點(diǎn)與焦點(diǎn)之間的關(guān)系的問題中,圓錐曲線的定義往往是解題的突破口.解決本題的關(guān)鍵在于利用定義求出周長的表達(dá)式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
過橢圓+y2=1的一個(gè)焦點(diǎn)的直線與橢圓交于、兩點(diǎn),則、與橢圓的另一焦點(diǎn)構(gòu)成的△的周長為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
設(shè)和為雙曲線()的兩個(gè)焦點(diǎn), 若F1 、F2,是正三角形的三個(gè)頂點(diǎn),則雙曲線的離心率為
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com