已知數(shù)列滿足,給出下列命題:
①當(dāng)時(shí),數(shù)列為遞減數(shù)列
②當(dāng)時(shí),數(shù)列不一定有最大項(xiàng)
③當(dāng)時(shí),數(shù)列為遞減數(shù)列
④當(dāng)為正整數(shù)時(shí),數(shù)列必有兩項(xiàng)相等的最大項(xiàng)
請(qǐng)寫出正確的命題的序號(hào)____
③④

選項(xiàng)①:當(dāng)時(shí),,有,則,即數(shù)列不是遞減數(shù)列,故①錯(cuò)誤;
選項(xiàng)②:當(dāng)時(shí),,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051201431830.png" style="vertical-align:middle;" />,所以數(shù)列可有最大項(xiàng),故②錯(cuò)誤;
選項(xiàng)③:當(dāng)時(shí),,所以,即數(shù)列是遞減數(shù)列,故③正確;
選項(xiàng)④:,當(dāng)為正整數(shù)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),令,解得,數(shù)列必有兩項(xiàng)相等的最大項(xiàng),故④正確.
所以正確的選項(xiàng)為③④.
【考點(diǎn)】數(shù)列的函數(shù)特征.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)(其中),區(qū)間.
(1)求區(qū)間的長度(注:區(qū)間的長度定義為);
(2)把區(qū)間的長度記作數(shù)列,令,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分18分)本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分,
第3小題滿分8分.
如果數(shù)列同時(shí)滿足:(1)各項(xiàng)均為正數(shù),(2)存在常數(shù)k, 對(duì)任意都成立,那么,這樣的數(shù)列我們稱之為“類等比數(shù)列” .由此各項(xiàng)均為正數(shù)的等比數(shù)列必定是“類等比數(shù)列” .問:
(1)若數(shù)列為“類等比數(shù)列”,且k=(a2-a1)2,求證:a1、a2、a3成等差數(shù)列;
(2)若數(shù)列為“類等比數(shù)列”,且k=, a2、a4、a5成等差數(shù)列,求的值;
(3)若數(shù)列為“類等比數(shù)列”,且a1=a,a2=b(a、b為常數(shù)),是否存在常數(shù)λ,使得對(duì)任意都成立?若存在,求出λ;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(2011•湖北)已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足:a1=a(a≠0),an+1=rSn(n∈N*,r∈R,r≠﹣1).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若存在k∈N*,使得Sk+1,Sk,Sk+2成等差數(shù)列,試判斷:對(duì)于任意的m∈N*,且m≥2,am+1,am,am+2是否成等差數(shù)列,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列滿足,向量.
(1)求證數(shù)列為等差數(shù)列,并求通項(xiàng)公式;
(2)設(shè),若對(duì)任意都有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(2013•重慶)若2、a、b、c、9成等差數(shù)列,則c﹣a= _________ 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

(2014·孝感模擬)已知函數(shù)f(x)是R上的單調(diào)增函數(shù)且為奇函數(shù),數(shù)列{an}是等差數(shù)列,a3>0,則f(a1)+f(a3)+f(a5)的值(  )
A.恒為正數(shù)B.恒為負(fù)數(shù)
C.恒為0D.可以為正數(shù)也可以為負(fù)數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(2013·天津模擬)已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2an-2(n∈N*),數(shù)列{bn}滿足b1=1,且點(diǎn)P(bn,bn+1)(n∈N*)在直線y=x+2上.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式.
(2)求數(shù)列{an·bn}的前n項(xiàng)和Dn
(3)設(shè)cn=an·sin2-bn·cos2(n∈N*),求數(shù)列{cn}的前2n項(xiàng)和T2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在四個(gè)正數(shù)2,a,b,9中,若前三個(gè)數(shù)成等差數(shù)列,后三個(gè)數(shù)成等比數(shù)列,則a=__b=____

查看答案和解析>>

同步練習(xí)冊(cè)答案