若P(x,y)在圓(x-3)2+(y-
3
2=3上運(yùn)動(dòng),則
y
x
的最大值為
 
考點(diǎn):圓的標(biāo)準(zhǔn)方程
專(zhuān)題:直線(xiàn)與圓
分析:設(shè)
y
x
=k,利用點(diǎn)到直線(xiàn)的距離公式以及直線(xiàn)和圓的位置關(guān)系進(jìn)行求解.
解答: 解:設(shè)
y
x
=k,即kx-y=0,
∵P(x,y)在圓(x-3)2+(y-
3
2=3上運(yùn)動(dòng),
∴圓心(3,
3
)到直線(xiàn)kx-y=0的距離d=
|3k-
3
|
1+k2
3
,
平方得(3k-
3
2≤3(1+k2
即k2-
3
k≤0,
解得0≤k≤
3

y
x
的最大值為
3

故答案為:
3
點(diǎn)評(píng):本題主要考查直線(xiàn)和圓的位置關(guān)系的應(yīng)用,根據(jù)點(diǎn)到直線(xiàn)的距離公式和半徑之間的關(guān)系是解決本題的關(guān)鍵
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,Sn=2an-2
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=log2an,cn=
1
bnbn+1
,記數(shù)列{cn}的前n項(xiàng)和Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

要制作一個(gè)長(zhǎng)為a,寬為b(a≥b,單位:m),高為0.5m的無(wú)蓋長(zhǎng)方體容器,容器的容量為2m3,若該容器的底面造價(jià)是每平方米20元,側(cè)面造價(jià)是每平方米10元,則當(dāng)a=
 
m時(shí),該容器的總造價(jià)最低,最低造價(jià)為
 
元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知下列a>0,b>0,給出下列四個(gè)不等式:
①a+b+
1
ab
≥2
2

②(a+b)(
1
a
+
1
b
)≥4;
a2+b2
ab
≥a+b;
④a+
1
a+4
≥-2.
其中正確的不等式有
 
(只填序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}為等比數(shù)列,a3=4,a6=32,則
S6
S3
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2x2-2,x≤1
lgx,x>1
,若f(f(a))≤0,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C1:(x-2)2+(y-3)2=1,圓C2:(x-3)2+(y-4)2=9,M,N分別是圓C1,C2上的動(dòng)點(diǎn),P為x軸上的動(dòng)點(diǎn),則|PM|+|PN|的最小值為(  )
A、
17
-1
B、5
2
-4
C、6-2
2
D、
17

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinα+sinβ=
3
4
,求cosα+cosβ的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)是偶函數(shù)的是( 。
A、y=sinx
B、y=xsinx
C、y=x 
1
2
D、y=2x-
1
2x

查看答案和解析>>

同步練習(xí)冊(cè)答案