已知在二面角α-l-β的α面上有Rt△ABC,斜邊BC在l上,A在β面上的射影為D,∠ABD為θ1,∠ACD為θ2,二面角α-l-β為θ.請(qǐng)問(wèn)以下條件哪一個(gè)成立( 。
A、sin2θ=sin2θ1+sin2θ2
B、cos2θ=cos2θ1+cos2θ2
C、tan2θ=tan2θ1+tan2θ2
考點(diǎn):二面角的平面角及求法
專(zhuān)題:計(jì)算題,空間角
分析:連接BD,CD,AD,過(guò)A作AE垂直BC于E,連接ED,利用勾股定理,結(jié)合AB•AC=BC•AE,即可得出結(jié)論.
解答: 解:連接BD,CD,AD
過(guò)A作AE垂直BC于E,連接ED,令A(yù)D=h
所以有AB=
h
sinθ1
,AC=
h
sinθ2
,AE=
h
sinθ

在Rt△ABC中,BC2=(
h
sinθ1
2+(
h
sinθ2
2,
又AB•AC=BC•AE,所以sin2θ=sin2θ1+sin2θ2
故選:A
點(diǎn)評(píng):本題考查二面角的平面角及求法,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題p:對(duì)?x∈R,都有x2-x+1>0成立,則p的否定形式為(  )
A、對(duì)?x∈R,都有x2-x+1≤0
B、?x0∈R,都有x02-x0+1≤0
C、?x0∈R,都有x02-x0+1>0
D、對(duì)?x∈R,都有x2-x+1<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知θ是三角形中的最小角,則sin(θ+
π
3
)的取值范圍是(  )
A、(
3
2
,1]
B、[
3
2
,1]
C、(
1
2
,1]
D、[
1
2
,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

十進(jìn)制整數(shù)轉(zhuǎn)換成二進(jìn)制數(shù)的最簡(jiǎn)便方法是“除2取余”法,它是用待轉(zhuǎn)換的十進(jìn)制整數(shù)除以2,取其余數(shù),作為相應(yīng)二進(jìn)制數(shù)的最低位,然后,再用商除以2,其余數(shù)作為相應(yīng)二進(jìn)制數(shù)的次低位,如此一直重復(fù)進(jìn)行下去,直到商為0,確定相應(yīng)的二進(jìn)制數(shù)的最高位時(shí)為止,對(duì)于十進(jìn)制數(shù)整數(shù)25換成二進(jìn)制數(shù)應(yīng)是( 。
A、10010B、10011
C、11001D、1010

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)在區(qū)間(0,+∞)上單調(diào)遞減的是( 。
A、y=-x2+8x+9
B、y=10x
C、y=cosx
D、y=
1
x
+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3+1,關(guān)于這個(gè)函數(shù)給出以下四個(gè)命題
①函數(shù)f(x)是奇函數(shù);
②x=0是函數(shù)f(x)的極值點(diǎn);
③y=1是曲線(xiàn)y=f(x)的一條切線(xiàn);
④存在a,b∈R,使得x∈[a,b]時(shí),f(x)∈[a+1,b+1]
其中真命題的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

平面上有9個(gè)點(diǎn),其中4個(gè)點(diǎn)在同一條直線(xiàn)上,此外任三點(diǎn)不共線(xiàn).
(1)分別以其中兩點(diǎn)為起點(diǎn)和終點(diǎn),最多可作出幾個(gè)向量?
(2)過(guò)每?jī)牲c(diǎn)連線(xiàn),可得幾條直線(xiàn)?
(3)以每三點(diǎn)為頂點(diǎn)作三角形可作幾個(gè)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A={x|-1<x<1},B={x|x<a}.
(1)若a=0,求A∩B,A∪B;
(2)若A∩B=φ,求a的取值范圍;
(3)若A∪B={x|x<1},求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}和{bn}滿(mǎn)足a1=b1=6,a2=b2=4,a3=b3=3,且數(shù)列{an+1-an}是等差數(shù)列,{bn-2}是等比數(shù)列.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)設(shè)數(shù)列{nbn}的前n項(xiàng)和為Sn,求Sn的表達(dá)式;
(3)數(shù)列{cn}滿(mǎn)足cn=an•(bn+2-2),求數(shù)列{cn}的最大項(xiàng).

查看答案和解析>>

同步練習(xí)冊(cè)答案