8、設函數(shù)f (x)=ax2+bx+c對任意實數(shù)t都有f (2+t)=f (2-t)成立,在函數(shù)值f(-1),f(1),f(2),f(5)中的最小的一個不可能是
f(1)
分析:由f (2+t)=f (2-t) 知函數(shù)函數(shù)圖象關于x=2對稱,當開口向上時,離軸越近值越小,當開口向下時,離軸越近值越大.
解答:解:∵函數(shù)f (x)=ax2+bx+c對任意實數(shù)t都有f (2+t)=f (2-t)成立
∴函數(shù)圖象關于x=2對稱
當a>0時f(2)最小,f(-1)=f(5)最大,
當時a<0f(-1)=f(5)最小,f(2)最大
所以f(1)不可能最小的.
故答案為:f(1).
點評:本題主要考查函數(shù)的對稱性,要注意開口方向.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=A+Bsinx,若B<0時,f(x)的最大值是
3
2
,最小值是-
1
2
,則A=
 
,B=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
a
b
其中向量
a
=(2cosx,1),b=(cosx,
3
sin2x+m)

(1)求函數(shù)f(x)的最小正周期和在[0,π]上的單調(diào)遞增區(qū)間;
(2)當x∈[0,
π
6
]
時,f(x)的最大值為4,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=a+bcosx+csinx的圖象過點(0,1)和點(
π
2
,1)
,當x∈[0,
π
2
]
時,|f(x)|<2,則實數(shù)a的取值范圍是(  )
A、-
2
<a≤1
B、1≤a<4+3
2
C、-
2
<a<4+3
2
D、-a<a<2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
a
b
,其中向量
a
=(2cosx,1),
b
=(cosx,-1)(x∈R).
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)在△ABC中,角A、B、C所對的邊分別為a、b、c,若f(A)=-
1
2
,且a=
3
,b+c=3,(b>c),求b與c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(sinωx+cosωx,sinωx)
b
=(sinωx-cosωx,2
3
cosωx),設函數(shù)f(x)=
a
b
(x∈R)的圖象關于直線x=
π
3
對稱,其中常數(shù)ω∈(0,2)
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)將函數(shù)f(x)的圖象向左平移
π
12
個單位,得到函數(shù)g(x)的圖象,用五點法作出函數(shù)g(x)在區(qū)間[-
π
2
π
2
]的圖象.

查看答案和解析>>

同步練習冊答案