7.已知函數(shù)f(x)=x2-ax的圖象在點A(1,f(1))處的切線l與直線x+3y-1=0垂直,記數(shù)列$\{\frac{1}{f(n)}\}$的前n項和為Sn,則S2016的值為( 。
A.$\frac{2015}{2016}$B.$\frac{2016}{2017}$C.$\frac{2014}{2015}$D.$\frac{2017}{2018}$

分析 求得f(x)的導數(shù),求得切線的斜率,由兩直線垂直的條件:斜率之積為-1,解方程可得a=-1,求出$\frac{1}{f(n)}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,再由數(shù)列的求和方法:裂項相消求和,計算即可得到所求和.

解答 解:函數(shù)f(x)=x2-ax的導數(shù)為f′(x)=2x-a,
可得函數(shù)f(x)圖象在點A(1,f(1))處的切線斜率k=f′(1)=2-a,
由切線l與直線x+3y-1=0垂直,可得2-a=3,解得a=-1,
即有f(x)=x2+x=x(x+1),
故$\frac{1}{f(n)}=\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$,
則${S_{2016}}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+…+\frac{1}{2016}-\frac{1}{2017}$=$1-\frac{1}{2017}=\frac{2016}{2017}$.
故選:B.

點評 本題考查導數(shù)的運用:求切線的斜率,同時考查數(shù)列的求和方法:裂項相消求和,考查化簡整理的運算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

13.數(shù)列{an}滿足a1=1,a2=2,an+2=2an+1-an+2
(1)設bn=an+1-an,證明{bn}等差數(shù)列
(2){an}通項公式
(3)求{$\frac{{a}_{n}-{n}^{2}}{3n}$}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.計算$\frac{3x}{{x}^{2}-2x-3}$-$\frac{1}{x+1}$=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.將53化為二進制的數(shù),結果為( 。
A.10101(2)B.101011(2)C.110011(2)D.110101(2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=lnx,g(x)=ex
(1)確定方程f(x)=$\frac{x+1}{x-1}$實數(shù)根的個數(shù);
(2)我們把與兩條曲線都相切的直線叫作這兩條曲線的公切線,試確定曲線y=f(x),y=g(x)公切線的條數(shù),并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.若直線y=kx+2是函數(shù)f(x)=x3-x2-3x-1的圖象的一條切線,則k=( 。
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.如圖,已知邊長為6的菱形ABCD,∠ABC=120°,AC與BD相交于O,將菱形ABCD沿對角線AC折起,使BD=3$\sqrt{2}$.

(1)若M是BC的中點,求證:在三棱錐D-ABC中,直線OM與平面ABD平行;
(2)求二面角A-BD-O的余弦值;
(3)在三棱錐D-ABC中,設點N是BD上的一個動點,試確定N點的位置,使得CN=4$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.曲線y=a$\sqrt{x}$(a>0)與曲線y=ln$\sqrt{x}$有公共點,且在公共點處的切線相同,則a的值為(  )
A.eB.e2C.e-2D.e-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.函數(shù)f(x)=$\frac{{\sqrt{4-{x^2}}}}{{{{log}_2}x-1}}$的定義域為(0,2).

查看答案和解析>>

同步練習冊答案