12.已知x、y滿足不等式組$\left\{\begin{array}{l}{x≥0}\\{x-y≤0}\\{4x+3y≤14}\end{array}\right.$,設(x+2)2+(y+1)2的最小值為ω,則函數(shù)f(t)=sin(ωt+$\frac{π}{6}$)的最小正周期為$\frac{2π}{5}$.

分析 作出不等式組對應的平面區(qū)域,利用,(x+2)2+(y+1)2的幾何意義求出ω的值,然后根據(jù)三角函數(shù)的周期公式進行求解即可.

解答 解:作出不等式組對應的平面區(qū)域,(x+2)2+(y+1)2的幾何意義是區(qū)域內的點到定點C(-2,-1)的距離的平方
由圖象知OC的距離最小,
此時最小值為ω=(0+2)2+(0+1)2=4+1=5,
f(t)=sin(5t+$\frac{π}{6}$),
則最小正周期T=$\frac{2π}{5}$,
故答案為:$\frac{2π}{5}$

點評 本題主要考查三角函數(shù)周期的計算以及線性規(guī)劃的應用,根據(jù)線性規(guī)劃的知識求出ω的值是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

2.證明函數(shù)f(x)=$\frac{{2}^{x}}{{2}^{x}+\sqrt{2}}$(x∈R)關于($\frac{1}{2}$,$\frac{1}{2}$)對稱.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.函數(shù)f(x)=$\frac{{x}^{2}-3x+4}{x}$,g(x)=mx+2,若對任意的x1∈[1,3],總存在x2∈[1,3],使得f(x2)<g(x1),則實數(shù)m的取值范圍是(-$\frac{1}{3}$,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知雙曲線C:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1(a>0,b>0)的兩條漸近線與直線y=-1所圍成的三角形的面積為4,則雙曲線C的離心率為( 。
A.$\sqrt{15}$B.$\frac{\sqrt{17}}{2}$C.$\sqrt{17}$D.$\frac{\sqrt{15}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知由實數(shù)組成的等比數(shù)列{an}的前n項和為Sn,若S2=$\frac{3}{2}$,a4+a5=$\frac{3}{16}$,則S5=( 。
A.31B.5C.$\frac{31}{16}$D.$\frac{15}{8}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知{an}是等比數(shù)列,S4=1,S8=4,則a17+a18+a19+a20=81.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.函數(shù)y=sin(x+$\frac{π}{4}$)圖象的一條對稱軸是( 。
A.x軸B.y軸C.直線x=$\frac{π}{4}$D.直線x=-$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.若α為銳角,3sinα=tanα,則cos(α-$\frac{π}{4}$)=$\frac{4+\sqrt{2}}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.若雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線方程為2x-y=0,則它的離心率為( 。
A.$\sqrt{3}$B.2C.$\sqrt{5}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

同步練習冊答案