5.如圖是一個(gè)正方體的平面展開(kāi)圖,在這個(gè)正方體中
①BM∥ED
②CN與BM成60°角
③CN與BM為異面直線(xiàn)    
④DM⊥BN
以上四個(gè)命題中,正確的序號(hào)是( 。
A.①②③B.②④C.③④D.②③④

分析 首先將正方體的平面展開(kāi)圖圍成正方體,得到對(duì)應(yīng)直線(xiàn)的位置關(guān)系.

解答 解:由已知得到幾何體如圖:很顯然BM與ED是異面直線(xiàn);故①錯(cuò)誤;
因?yàn)锽E∥CN,△BEM為等邊三角形,所以②CN與BM成60°角是正確的;
③CN與BM為異面直線(xiàn)   正確; 
因?yàn)锽N在平面CDNM的攝影為CN,并且CN⊥DM,故④DM⊥BN正確;
故選D.

點(diǎn)評(píng) 本題考查了正方體中直線(xiàn)的位置關(guān)系;考查了空間想象能力;關(guān)鍵是正確還原正方體.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知關(guān)于x的一元二次函數(shù)f(x)=ax2+bx+2.
(1)若a=-12,b=-2,求不等式 f(x)>0的解集;
(2)當(dāng)b=-1時(shí),若不等式f(x)<0解集為∅,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知$α,β均為銳角,α>β,且cos(α+β)=-\frac{4}{5},sin(α-β)=\frac{5}{13}$.
求cos2β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在△ABC中,∠B=30°,AC=$\sqrt{3}$.
(1)若∠A=45°,求AB的長(zhǎng);
(2)求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{({x}^{2}+x+2)lnx,x≤2}\\{\frac{1}{2}lg({x}^{2}+1),x>2}\end{array}\right.$則f(f(3$\sqrt{11}$))=( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知圓C1:x2+y2-2x-4y-13=0與圓C2:x2+y2-2ax-6y+1=0(其中a>0)相外切,且直線(xiàn)l:(m+1)x-7m-7=0與圓C2相切,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.為了得到y(tǒng)=sin(x+$\frac{1}{3}$),x∈R的圖象,只需把曲線(xiàn)y=sinx上的所有點(diǎn)( 。
A.向左平行移動(dòng)$\frac{π}{3}$個(gè)單位長(zhǎng)度B.向左平行移動(dòng)$\frac{1}{3}$個(gè)單位長(zhǎng)度
C.向右平行移動(dòng)$\frac{π}{3}$個(gè)單位長(zhǎng)度D.向右平行移動(dòng)$\frac{1}{3}$個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知角α滿(mǎn)足tanα=2,則$\frac{sinα+cosα}{sinα-cosα}$的值為 ( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.$\overrightarrow{AB}$+$\overrightarrow{DA}$+$\overrightarrow{BD}$-$\overrightarrow{BC}$-$\overrightarrow{CA}$=$\overrightarrow{AB}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案