20.函數(shù)g(x)=ax3+2(1-a)x2-3ax在區(qū)間(-∞,$\frac{a}{3}$)內(nèi)單調(diào)遞減,則a的取值范圍為( 。
A.a≥1B.a≤1C.a≥-1D.-1≤a≤0

分析 由g′(x)=3ax2+4(1-a)x-3a,g(x)在(-∞,$\frac{a}{3}$)遞減,則g′(x)在(-∞,$\frac{a}{3}$)上小于等于0,討論(1)a=0時(shí),(2)a>0,(3)a<0時(shí)的情況,從而求出a的范圍.

解答 解:∵g′(x)=3ax2+4(1-a)x-3a,g(x)在(-∞,$\frac{a}{3}$)遞減,
則g′(x)在(-∞,$\frac{a}{3}$)上小于等于0,即:3ax2+4(1-a)x-3a≤0,
(1)a=0時(shí),g′(x)≤0,解得:x≤0,即g(x)的減區(qū)間是(-∞,0),
∴$\frac{a}{3}$≤0,才能g(x)在(-∞,$\frac{a}{3}$)遞減,解得a=0 成立.
(2)a>0,g′(x)是一個(gè)開(kāi)口向上的拋物線,
要使g′(x)在(-∞,$\frac{a}{3}$)上小于等于0 解得:a無(wú)解;
(3)a<0,g′(x)是一個(gè)開(kāi)口向下的拋物線,
設(shè)g′(x)與x軸的左右兩交點(diǎn)為A(x1,0),B(x2,0)
由韋達(dá)定理,知x1+x2=-$\frac{4(1-a)}{3a}$,x1x2=-1,
解得:x1=-$\frac{2(1-a)+\sqrt{13{a}^{2}-8a+4}}{3a}$,
則在A左邊和B右邊的部分g′(x)≤0 又知g(x)在(-∞,$\frac{a}{3}$)遞減,
即g′(x)在(-∞,$\frac{a}{3}$)上小于等于0,
∴x1≥$\frac{a}{3}$,即:解得-1≤a≤5,取交集,得-1≤a<0,
∴a的取值范圍是-1≤a≤0.
故選:D.

點(diǎn)評(píng) 本題考察了函數(shù)的單調(diào)性,導(dǎo)數(shù)的應(yīng)用,滲透了分類討論思想,是一道綜合題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.在等差數(shù)列{an}中,a1+3a8+a15=60,則2a${\;}_{{9}_{\;}}$-a10的值為( 。
A.6B.8C.12D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知公差為2的等差數(shù)列{an}及公比為2的等比數(shù)列{bn}滿足a1+b1>0,a2+b2<0,設(shè)m=a4+b3,則實(shí)數(shù)m的取值范圍是(-∞,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知集合A={-$\frac{1}{3}$,$\frac{1}{2}$},B={x|ax+1=0}},且B⊆A,則a的可取值組成的集合為( 。
A.{-3,2}B.{-3,0,2}C.{3,-2}D.{3,0,-2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.三棱柱ABC-A1B1C1的底面ABC是等邊三角形,BC的中點(diǎn)為O,A1O⊥底面ABC,AA1與底面ABC所成的角為$\frac{π}{3}$,點(diǎn)D在棱AA1上,且AD=$\sqrt{3}$,AB=4.
(1)求證:OD⊥平面BB1C1C;
(2)求二面角B-B1C-A1的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=(ax2-lnx)(x-lnx)+1(a∈R).
(1)若ax2>lnx,求證:f(x)≥ax2-lnx+1;
(2)若?x0∈(0,+∞),f(x0)=1+x0lnx0-ln2x0,求a的最大值;
(3)求證:當(dāng)1<x<2時(shí),f(x)>ax(2-ax).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.在正方體ABCD-A1B1C1D1中,底面ABCD是邊長(zhǎng)為3$\sqrt{2}$的正方形,AA1=3,E是線段A1B1上一點(diǎn),若二面角A-BD-E的正切值為3,則三棱錐A-A1D1E外接球的表面積為35π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.如圖所示,單位位圓上的兩個(gè)向量$\overrightarrow{a},\overrightarrow$相互垂直,若向量$\overrightarrow{c}$滿足($\overrightarrow{c}-\overrightarrow{a}$)•($\overrightarrow{c}-\overrightarrow$)=0,則|$\overrightarrow{c}$|的取值范圍是( 。
A.[0,1]B.[0,$\sqrt{2}$]C.[1,$\sqrt{2}$]D.[1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.過(guò)雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn)F且斜率為1的直線與漸近線有且只有一個(gè)交點(diǎn),則雙曲線的離心率為$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案