13.已知函數(shù)$f(x)=2sin(ωx+\frac{π}{3})(ω>0)$的最小正周期為π,則方程f(x)=1在(0,π]上的解集為{$\frac{5π}{6}$,$\frac{13π}{6}$}.

分析 由已知及周期公式可求ω,可解得:sin(2x+$\frac{π}{3}$)=$\frac{1}{2}$,由x∈(0,π],可得2x+$\frac{π}{3}$∈($\frac{π}{3}$,$\frac{7π}{3}$],從而解得f(x)=1在(0,π]上的解集.

解答 解:∵由題意可得:$\frac{2π}{ω}$=π,解得:ω=2,
∴f(x)=2sin(2x+$\frac{π}{3}$)=1,可解得:sin(2x+$\frac{π}{3}$)=$\frac{1}{2}$,
∵x∈(0,π],
∴2x+$\frac{π}{3}$∈($\frac{π}{3}$,$\frac{7π}{3}$],
∴2x+$\frac{π}{3}$=$\frac{5π}{6}$或$\frac{13π}{6}$,即:x={$\frac{5π}{6}$,$\frac{13π}{6}$}.
故答案為:{$\frac{5π}{6}$,$\frac{13π}{6}$}.

點(diǎn)評(píng) 本題主要考查了正弦函數(shù)的性質(zhì)的簡(jiǎn)單應(yīng)用,三角函數(shù)周期性及其求法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.若復(fù)數(shù)z滿足z=i(2-z),則z=1+i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知兩條直線l1:y=m和l2:y=$\frac{9}{m}$(m>0),l1與函數(shù)y=|log2x|的圖象從左至右相交于點(diǎn)A,B,l2與函數(shù)y=|log2x|的圖象從左至右相交于C,D.記線段AC和BD在x軸上的投影長(zhǎng)度分別為a,b,當(dāng)m變化時(shí),$\frac{a}$的最小值為(  )
A.32B.$\frac{1}{64}$C.64D.$\frac{1}{64}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.函數(shù)y=x2-2x+3(x∈(0,3])的值域?yàn)椋ā 。?table class="qanwser">A.[2,+∝)B.[2,6]C.[3,6]D.(3,6]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知函數(shù)f(x)的定義域是(0,1),那么f(2x-1)的定義域是(  )
A.(-∞,0)B.(0,2)C.($\frac{1}{2}$,1)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知$tanθ=\frac{1}{2}$,且$θ∈(0,\frac{π}{2})$.
(1)求cos2θ與$tan(θ+\frac{π}{4})$的值;
(2)若$5cos(θ-ϕ)=3\sqrt{5}cosϕ,0<ϕ<\frac{π}{2}$,求ϕ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知函數(shù)f(x)=log2x,當(dāng)定義域?yàn)?[\frac{1}{2}\;,\;4]$時(shí),該函數(shù)的值域?yàn)閇-1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知:A(8,-6),B(3,-1)和C(t,7)
(Ⅰ)若A,B,C三點(diǎn)共線,試求t的值.
(Ⅱ)若點(diǎn)C在直線AB的中垂線上,試求t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知集合A={x|y=$\sqrt{2x-{x}^{2}}$},B={y|y=2x,x>0},R是實(shí)數(shù)集,則(∁RB)∩A=[0,1].

查看答案和解析>>

同步練習(xí)冊(cè)答案