分析 由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結(jié)合的得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標,代入目標函數(shù)得答案.
解答 解:由約束條件$\left\{\begin{array}{l}{x+y≥1}\\{x-y≥1}\\{2x-y≥4}\end{array}\right.$,作出可行域如圖,
聯(lián)立$\left\{\begin{array}{l}{x+y=1}\\{2x-y=4}\end{array}\right.$,解得A($\frac{5}{3}$,$-\frac{2}{3}$),
化目標函數(shù)z=3x+y,
由圖可知,當直線z=3x+y過A時,直線在y軸上的截距最小,z有最小值為:3×$\frac{5}{3}$-$\frac{2}{3}$=$\frac{13}{3}$.
故答案為:$\frac{13}{3}$.
點評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | c<b<a | B. | a<c<b | C. | c<a<b | D. | b<c<a |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{{2\sqrt{2}}}{3}$ | B. | $\frac{{2\sqrt{2}}}{3}$ | C. | -$\frac{1}{3}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com