【題目】2002年北京國際數(shù)學(xué)家大會會標(biāo),是以中國古代數(shù)學(xué)家趙爽的弦圖為基礎(chǔ)而設(shè)計的,弦圖用四個全等的直角三角形與一個小正方形拼成的一個大正方形如圖,若大、小正方形的面積分別為25和1,直角三角形中較大銳角為,則等于  

A. B. C. D.

【答案】B

【解析】

根據(jù)兩正方形的面積分別求出兩正方形的邊長,根據(jù)小正方形的邊長等于直角三角形的長直角邊減去短直角邊,利用三角函數(shù)的定義表示出,兩邊平方并利用同角三角函數(shù)間的基本關(guān)系及二倍角的正弦函數(shù)公式化簡可得的值,然后根據(jù)的范圍求出的范圍即可判斷出的正負,利用同角三角函數(shù)間的基本關(guān)系由即可求出的值.

大正方形面積為25,小正方形面積為1

大正方形邊長為5,小正方形的邊長為1

,

兩邊平方得:,

是直角三角形中較小的銳角,

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是定義在上的奇函數(shù),且,若對任意的m,,,都有

,求a的取值范圍.

若不等式對任意都恒成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC中,已知點A5,-2,B7,3,且邊AC的中點M在y軸上,邊BC的中點N在x軸上,求:

(1)頂點C的坐標(biāo);

(2)直線MN的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C:的離心率為,且過點P(3,2).

(1)求橢圓C`的標(biāo)準(zhǔn)方程;

(2)設(shè)與直線OP(O為坐標(biāo)原點)平行的直線交橢圓CA,B兩點,求證:直線PA,PB軸圍成一個等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ae2x﹣be2x﹣cx(a,b,c∈R)的導(dǎo)函數(shù)f′(x)為偶函數(shù),且曲線y=f(x)在點(0,f(0))處的切線的斜率為4﹣c.
(1)確定a,b的值;
(2)若c=3,判斷f(x)的單調(diào)性;
(3)若f(x)有極值,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以直角坐標(biāo)系的原點為極點,軸的正半軸為極軸,且兩個坐標(biāo)系取相等的長度單位建立坐標(biāo)系.已知直線的極坐標(biāo)方程為,曲線的參數(shù)方程為為參數(shù)).

(1)求曲線的普通方程和直線的直角坐標(biāo)方程;

(2)直線上有一點,設(shè)直線與曲線相交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)實數(shù)x,y滿足 時,1≤ax+y≤4恒成立,則實數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù),若在其定義域內(nèi)存在實數(shù),使得成立,則稱有“※點”

(1)判斷函數(shù)上是否有“※點”。并說明理由;

(2)若函數(shù)上有“※點”,求正實數(shù)a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin(3x+ ).
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)若α是第二象限角,f( )= cos(α+ )cos2α,求cosα﹣sinα的值.

查看答案和解析>>

同步練習(xí)冊答案