化簡:sin4θ-cos4θ=
 
考點(diǎn):二倍角的余弦
專題:三角函數(shù)的求值
分析:利用平方差公式與倍角公式即可得出.
解答: 解:sin4θ-cos4θ=(sin2θ+cos2θ)(sin2θ-cos2θ)=sin2θ-cos2θ=-cos2θ.
故答案為:-cos2θ.
點(diǎn)評(píng):本題考查了平方差公式與倍角公式,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)的圖象過點(diǎn)(0,4),對(duì)任意x滿足f(3-x)=f(x),且有最小值是
7
4
;已知g(x)=2x-m
(Ⅰ)求f(x)的解析式;
(Ⅱ)求函數(shù)h(x)=f(x)-(2t-3)x在區(qū)間[0,1]上的最小值,其中t∈R;
(Ⅲ)若f(x)恒在g(x)=2x-m的上方,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知圓C1:(x-4)2+(y-5)2=4和圓C2:(x+3)2+(y-1)2=4.
(1)若直線l1過點(diǎn)A(2,0),且與圓C1相切,求直線l1的方程;
(2)直線l2的方程是x=
5
2
,證明:直線l2上存在點(diǎn)P,滿足過P的無窮多對(duì)互相垂直的直線l3和l4,它們分別與圓C1和圓C2相交,且直線l3被圓C1截得的弦長與直線l4被圓C2截得的弦長相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線l的方程為kx-y+1-k=0(k∈R),則直線l與橢圓
x2
9
+
y2
4
=1的交點(diǎn)個(gè)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知矩形ABCD相鄰兩頂點(diǎn)A(-1,3)、B(-2,4),若矩形對(duì)角線交點(diǎn)在x軸上,求另兩個(gè)頂點(diǎn)C和D的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下求方程x5+x3+x2-1=0在[0,1]之間近似根的算法是( 。
A、輾轉(zhuǎn)相除法B、二分法
C、更相減損術(shù)D、秦九韶算法

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,一輛車要通過某十字路口,直行時(shí)前方剛好由綠燈轉(zhuǎn)為紅燈.該車前面已有4輛車依次在同一車道上排隊(duì)等候(該車道只可以直行或左轉(zhuǎn)行駛).已知每輛車直行的概率為
2
3
,左轉(zhuǎn)行駛的概率
1
3
.該路口紅綠燈轉(zhuǎn)換隔均為1分鐘.假設(shè)該車道上一輛直行的車駛出停車線需要10秒,一輛左轉(zhuǎn)行駛的車駛出停車線需要20秒.求:
(1)前面4輛車恰有2輛左轉(zhuǎn)行駛的概率為多少?
(2)該車在第一次綠燈亮起的1分鐘內(nèi)能通過該十字路口的概率(汽車駛出停車線就算通過路口);
(3)假設(shè)每次由紅燈轉(zhuǎn)為綠燈的瞬間,所有排隊(duì)等候的車輛都同時(shí)向前行駛,求該車在這十字路口停車等候的時(shí)間的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某工廠生產(chǎn)A和B兩種產(chǎn)品,已知制造產(chǎn)品A1kg,要用煤9t,電力4kw,勞動(dòng)力3個(gè),能創(chuàng)造經(jīng)濟(jì)價(jià)值7萬元;制造產(chǎn)品B1kg,要用煤4t,電力5kw,勞動(dòng)力10個(gè),能創(chuàng)造經(jīng)濟(jì)價(jià)值12萬元,現(xiàn)在該工廠有煤360t,電力200kw,勞動(dòng)力300個(gè),問在這種限制條件下,應(yīng)生產(chǎn)產(chǎn)品A、B各多少千克,才能使所創(chuàng)造的總的經(jīng)濟(jì)價(jià)值最高?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線(3λ+1)x+(1-λ)y+6-6λ=0與不等式組
x+y-7<0
x-3y+1<0
3x-y-5>0
表示的平面區(qū)域有公共點(diǎn),則實(shí)數(shù)λ的取值范圍是( 。
A、(-∞,-
13
7
)∪(9,+∞)
B、,(-
13
7
,1)∪(9,+∞)
C、(1,9)
D、(-∞,-
13
7

查看答案和解析>>

同步練習(xí)冊(cè)答案