【題目】某“芝麻開門”娛樂活動中,共有扇門,游戲者根據(jù)規(guī)則開門,并根據(jù)打開門的數(shù)量獲取相應(yīng)獎勵.已知開每扇門相互獨立,且規(guī)則相同,開每扇門的規(guī)則是:從給定的把鑰匙(其中有且只有把鑰匙能打開門)中,隨機地逐把抽取鑰匙進(jìn)行試開,鑰匙使用后不放回.若門被打開,則轉(zhuǎn)為開下一扇門;若連續(xù)次未能打開,則放棄這扇門,轉(zhuǎn)為開下一扇門;直至扇門都進(jìn)行了試開,活動結(jié)束.
(1)設(shè)隨機變量為試開第一扇門所用的鑰匙數(shù),求的分布列及數(shù)學(xué)期望;
(2)求恰好成功打開扇門的概率.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)自制了一套數(shù)學(xué)實驗?zāi)P,該模型三視圖如圖所示.模型內(nèi)置一個與其各個面都相切的球,該模型及其內(nèi)球在同一方向有開口裝置.實驗的時候,隨機往模型中投擲大小相等,形狀相同的玻璃球,通過計算落在球內(nèi)的玻璃球數(shù)量,來估算圓周率的近似值.已知某次實驗中,某同學(xué)一次投擲了個玻璃球,請你估算落在球內(nèi)的玻璃球數(shù)量(其中)( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某社區(qū)組織“學(xué)習(xí)強國”的知識競賽,從參加競賽的市民中抽出40人,將其成績分成以下6組:第1組,第2組,第3組,第4組,第5組,第6組,得到如圖所示的頻率分布直方圖.現(xiàn)采用分層抽樣的方法,從第2,3,4組中按分層抽樣抽取8人,則第2,3,4組抽取的人數(shù)依次為( )
A.1,3,4B.2,3,3C.2,2,4D.1,1,6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司準(zhǔn)備上市一款新型轎車零配件,上市之前擬在其一個下屬4S店進(jìn)行連續(xù)30天的試銷,定價為1000元/件.
(1)設(shè)日銷售40個零件的概率為,記5天中恰有2天銷售40個零件的概率為,寫出關(guān)于的函數(shù)關(guān)系式,并求極大值點.
(2)試銷結(jié)束后統(tǒng)計得到該4S店這30內(nèi)的日銷售量(單位:件)的數(shù)據(jù)如下表:
日銷售量 | 40 | 60 | 80 | 100 |
頻數(shù) | 9 | 12 |
其中,有兩個數(shù)據(jù)未給出.試銷結(jié)束后,這款零件正式上市,每件的定價仍為1000元,但生產(chǎn)公司對該款零件不零售,只提供零件的整箱批發(fā),大箱每箱有55件,批發(fā)價為550元/件;小箱每箱有40件,批發(fā)價為600元/件,以這30天統(tǒng)計的各日銷售量的頻率作為試銷后各日銷售量發(fā)生的概率.該4S店決定每天批發(fā)兩箱,若同時批發(fā)大箱和小箱,則先銷售小箱內(nèi)的零件,同時根據(jù)公司規(guī)定,當(dāng)天沒銷售出的零件按批發(fā)價的9折轉(zhuǎn)給該公司的另一下屬4S店,假設(shè)日銷售量為80件的概率為,其中為(1)中的極大值點.
(i)設(shè)該4S店批發(fā)兩大箱,當(dāng)天這款零件的利潤為隨機變量;批發(fā)兩小箱,當(dāng)天這款零件的利潤為隨機變量,求和;
(ii)以日利潤的數(shù)學(xué)期望作為決策依據(jù),該4S店每天應(yīng)該按什么方案批發(fā)零件?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC—A1B1C1中,ACBC,D,E分別是A1B1,BC的中點.求證:
(1)平面ACD⊥平面BCC1B1;
(2)B1E∥平面ACD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)據(jù)的收集和整理在當(dāng)今社會起到了舉足輕重的作用,它用統(tǒng)計的方法來幫助人們分析以往的行為習(xí)慣,進(jìn)而指導(dǎo)人們接下來的行動.
某支足球隊的主教練打算從預(yù)備球員甲、乙兩人中選一人為正式球員,他收集到了甲、乙兩名球員近期5場比賽的傳球成功次數(shù),如下表:
場次 | 第一場 | 第二場 | 第三場 | 第四場 | 第五場 |
甲 | 28 | 33 | 36 | 38 | 45 |
乙 | 39 | 31 | 43 | 39 | 33 |
(1)根據(jù)這兩名球員近期5場比賽的傳球成功次數(shù),完成莖葉圖(莖表示十位,葉表示個位);分別在平面直角坐標(biāo)系中畫出兩名球員的傳球成功次數(shù)的散點圖;
(2)求出甲、乙兩名球員近期5場比賽的傳球成功次數(shù)的平均值和方差;
(3)主教練根據(jù)球員每場比賽的傳球成功次數(shù)分析出球員在場上的積極程度和技術(shù)水平,同時根據(jù)多場比賽的數(shù)據(jù)也可以分析出球員的狀態(tài)和潛力.你認(rèn)為主教練應(yīng)選哪位球員?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中曲線C的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,已知直線l過A,B兩點,且這兩點的極坐標(biāo)分別為.
(I)求C的普通方程和的直角坐標(biāo)方程;
(II)若M為曲線C上一動點,求點M到直線l的最小距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com