分析 (1)由數(shù)列的前n項和求得首項,再由an=Sn-Sn-1求得n≥2時的通項公式,驗證首項后得答案;
(2)把數(shù)列{an}的通項公式代入bn=2${\;}^{{a}_{n}}$+1,分組后利用等比數(shù)列的前n項和得答案.
解答 解:(1)由Sn=n2-n,得a1=S1=0;
當(dāng)n≥2時,${a}_{n}={S}_{n}-{S}_{n-1}={n}^{2}-n-[(n-1)^{2}-(n-1)]$=2n-2;
驗證n=1時成立,
∴an=2n-2;
(2)bn=2${\;}^{{a}_{n}}$+1=22n-2+1=4n-1+1,
∴Tn=b1+b2+b3+…+bn
=40+1+41+1+42+1+…+4n-1+1
=(1+4+42+…+4n-1)+n=$\frac{1×(1-{4}^{n})}{1-4}+n=\frac{{4}^{n}}{3}+n-\frac{1}{3}$.
點評 本題考查數(shù)列遞推式,考查了數(shù)列的分組求和,訓(xùn)練了等比數(shù)列的前n項和,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{13}$ | B. | $\frac{13}{2}$ | C. | $\frac{2}{17}$ | D. | $\frac{2}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-5,3) | B. | (-3,5) | C. | (-15,1) | D. | (-1,15) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com