6.已知函數(shù)f(x)=sin(ωx+$\frac{π}{3}$)-$\frac{1}{2}$cos(ωx-$\frac{7π}{6}$)(ω>0),滿足f(-$\frac{π}{6}$)=$\frac{3}{4}$,則滿足題意的ω的最小值為(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.1D.2

分析 首先化簡三角函數(shù)式,根據(jù)f(-$\frac{π}{6}$)=$\frac{3}{4}$,得到ω的兩個等式,由題意取ω的最小正數(shù).

解答 解:f(x)=sin(ωx+$\frac{π}{3}$)-$\frac{1}{2}$cos(ωx-$\frac{7π}{6}$)
=sin(ωx)cos$\frac{π}{3}$+cos(ωx)sin$\frac{π}{3}$)-$\frac{1}{2}$cos(ωx)cos$\frac{7π}{6}$-$\frac{1}{2}$sin(ωx)sin$\frac{7π}{6}$
=$\frac{3}{4}$sin(ωx)+$\frac{3\sqrt{3}}{4}$cos(ωx)
=$\frac{3}{2}$sin(ωx+$\frac{π}{3}$),
又f(-$\frac{π}{6}$)=$\frac{3}{4}$,所以sin($-\frac{π}{6}$ω+$\frac{π}{3}$)=$\frac{1}{2}$,所以ω=1-12k或ω=-3-12k,k∈Z,所以滿足題意的ω的最小值為1.
故選C.

點評 本題考查了三角函數(shù)式的化簡與求值;熟練正確的對解析式化簡是解答的前提.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖 已知四邊形 ABCD 為直角梯形,AB⊥AD,DC∥AB,且邊 AB、AD、DC 的長分別為 7cm,4cm,4cm,分別以 AB、AD、DC 三邊所在直線為旋轉(zhuǎn)軸,求所得幾何體體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知$\frac{π}{4}<x<\frac{π}{2}$,設(shè)a=sinx,b=cosx,c=tanx,則(  )
A.a<b<cB.b<a<cC.a<c<bD.b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)$y=\frac{3+x}{x-2},x∈[3,6]$
(1)判斷并證明函數(shù)的單調(diào)性;
(2)求此函數(shù)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知e是自然對數(shù)的底數(shù),函數(shù)f(x)=(ax2+x)ex,若f(x)在[-1,1]上是單調(diào)增函數(shù),則a的取值范圍是( 。
A.[-$\frac{2}{3}$,0]B.(-∞,0)∪[$\frac{2}{3}$,+∞)C.[0,$\frac{2}{3}$]D.(-∞,-$\frac{2}{3}$]∪[0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)f(x)的定義域是(0,$\frac{π}{2}$),f′(x)是它的導(dǎo)函數(shù),且f(x)+tanx•f′(x)>0在定義域內(nèi)恒成立,則(  )
A.f($\frac{π}{6}$)>$\sqrt{2}$f($\frac{π}{4}$)B.$\sqrt{2}$sin1•f(1)>f($\frac{π}{4}$)C.f($\frac{π}{6}$)>$\sqrt{3}$f($\frac{π}{3}$)D.$\sqrt{2}$f($\frac{π}{4}$)>$\sqrt{3}$f($\frac{π}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某公司計劃明年用不超過6千萬元的資金投資于本地養(yǎng)魚場和遠洋捕撈隊.經(jīng)過本地養(yǎng)魚場年利潤率的調(diào)研,得到如圖所示年利潤率的頻率分布直方圖.對遠洋捕撈隊的調(diào)研結(jié)果是:年利潤率為60%的可能性為0.6,不賠不賺的可能性為0.2,虧損30%的可能性為0.2.假設(shè)該公司投資本地養(yǎng)魚場的資金為x(x≥0)千萬元,投資遠洋捕撈隊的資金為y(y≥0)千萬元.
(1)利用調(diào)研數(shù)據(jù)估計明年遠洋捕撈隊的利潤ξ的分布列和數(shù)學(xué)期望Eξ.
(2)為確保本地的鮮魚供應(yīng),市政府要求該公司對本地養(yǎng)魚場的投資不得低于遠洋捕撈隊的一半.適用調(diào)研數(shù)據(jù),給出公司分配投資金額的建議,使得明年兩個項目的利潤之和最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.為了解甲、乙兩廠產(chǎn)品的質(zhì)量,從甲廠生產(chǎn)的產(chǎn)品中隨機抽取3件樣品,從乙廠生產(chǎn)的產(chǎn)品中隨機抽取4件樣品,測量產(chǎn)品中某種元素的含量(單位:毫克),如圖是測量數(shù)據(jù)的莖葉圖.若它們的中位數(shù)相同,平均數(shù)也相同,則圖中的m,n的比值$\frac{m}{n}$=(  )
A.1B.$\frac{1}{3}$C.$\frac{8}{3}$D.$\frac{3}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知某中學(xué)高三文科班學(xué)生的數(shù)學(xué)與地理的水平測試成績抽樣統(tǒng)計如表:
人數(shù) x
y
ABC
A144010
Ba36b
C28834
若抽取學(xué)生n人,成績分為A(優(yōu)秀),B(良好),C(及格)三個等次,設(shè)x,y分別表示數(shù)學(xué)成績與地理成績,例如:表中地理成績?yōu)锳等級的共有14+40+10=64(人),數(shù)學(xué)成績?yōu)锽等級且地理成績?yōu)镃等級的有8人.已知x與y均為A等級的概率是0.07.
(Ⅰ)設(shè)在該樣本中,數(shù)學(xué)成績的優(yōu)秀率是30%,求a,b的值;
(Ⅱ)已知a≥7,b≥6,求數(shù)學(xué)成績?yōu)锳等級的人數(shù)比C等級的人數(shù)多的概率.

查看答案和解析>>

同步練習(xí)冊答案