2.已知△ABC為直角三角形,∠C=90°,∠B=30°,AB=2,則AC=1.

分析 根據(jù)含有30°的直角三角形的性質(zhì)得出.

解答 解:∵∠C=90°,∠B=30°,AB=2,
∴AC=$\frac{1}{2}AB=1$.
故選1.

點(diǎn)評(píng) 本題考查了直角三角形的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.設(shè)變量x,y滿足約束條件:$\left\{\begin{array}{l}y≥x\\ x+2y≤2\\ x≥-2\end{array}\right.$,則z=2x+y的最小值是-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.復(fù)數(shù)z=$\frac{(1-i)^{2}}{3+i}$的所對(duì)應(yīng)的點(diǎn)位于復(fù)平面的( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在△ABC中,a,b,c分別為角A,B,C的對(duì)邊,且cos(B-C)-2sinBsinC=-$\frac{1}{2}$.
(1)求角A的大;
(2)當(dāng)a=5,b=4時(shí),求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=x3+a是奇函數(shù).
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)求證:f(x)是(-∞,+∞)上的增函數(shù);
(Ⅲ)若對(duì)任意的θ∈R,不等式f(sin2θ-msinθ)+f(2sinθ-3)<0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.(B)已知等比數(shù)列{an},首項(xiàng)為3,公比為$\frac{2}{5}$,前n項(xiàng)之積最大,則n=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.直線y=x+m與雙曲線2x2-y2=2交于A,B兩點(diǎn),若以AB為直徑的圓過(guò)原點(diǎn),求m的值及弦AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.f(x+1)=$\sqrt{f(x)-{f}^{2}(x)}+\frac{1}{2}$,且f(1)=$\frac{1}{4}$,數(shù)列{an}滿足an=f2(n)-f(n),n∈N*,若其前n項(xiàng)和為:-$\frac{35}{16}$,則n的值為(  )
A.16B.17C.18D.19

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.函數(shù)f(x)=x-cos2x,則f($\frac{π}{16}$)+f($\frac{2π}{16}$)+f($\frac{3π}{16}$)+…+f($\frac{7π}{16}$)=$\frac{7π}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案