分析 命題“p:?x∈[0,1],ex+a≥0”,化為:a≤(-ex)min.命題“q:?x∈R,x2+x+a=0”,可得△≥0.利用命題“p∧q”為真命題,即可得出.
解答 解:命題“p:?x∈[0,1],ex+a≥0”,化為:a≤(-ex)min=-e.
命題“q:?x∈R,x2+x+a=0”,∴△=1-4a≥0,解得a≤$\frac{1}{4}$.
若命題“p∧q”為真命題,
則$\left\{\begin{array}{l}{a≤-e}\\{a≤\frac{1}{4}}\end{array}\right.$,解得a≤-e.
則實(shí)數(shù)a的取值范圍為a≤-e.
故答案為:(-∞,-e].
點(diǎn)評(píng) 本題考查了一元二次方程的實(shí)數(shù)根與判別式的關(guān)系、函數(shù)的性質(zhì)、簡(jiǎn)易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (9,+∞) | B. | {0} | C. | (-∞,9] | D. | (0,9] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{3}$ | B. | $\frac{8}{3}$ | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\frac{8}{3}$ | C. | 3 | D. | $\frac{10}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com