對于數(shù)列{an},如果存在一個數(shù)列{bn},使得對于任意的n∈N*,都有an≥bn,則把{bn}叫做{an}的“基數(shù)列”.
(Ⅰ)設(shè)an=-n2,求證:數(shù)列{an}沒有等差基數(shù)列;
(Ⅱ)設(shè)an=n3-n2-2tn+t2,,(n∈N*),且{bn}是{an}的基數(shù)列,求t的取值范圍;
(Ⅲ)設(shè)an=1-e-n,(n∈N*),求證{bn}是{an}的基數(shù)列.
【答案】分析:(Ⅰ)假設(shè)數(shù)列{an}(an=-n2)存在等差基數(shù)列{bn},且bn=kn+b,(k,b是實常數(shù)),則n2+kn+b≤0對于任意的n∈N*均成立,與二次函數(shù)的圖象和性質(zhì)相矛盾,{an}不存在等差基數(shù)列.
(Ⅱ)f(n)=an-bn=,由{bn}是{an}的基數(shù)列,知f(n)≥0任意的n∈N*均成立,令 ,當(dāng)△≤0時,題設(shè)成立,;當(dāng)△>0時,解得,
由此能求出t的取值范圍.
(Ⅲ){bn}是{an}的基數(shù)列?an≥bn(n∈N*)?1-e-n?(n+1)(1-e-n)≥n?n+1≤en,由此能夠進(jìn)行證明.
解答:解:(Ⅰ)假設(shè)數(shù)列{an}(an=-n2)存在等差基數(shù)列{bn},
且bn=kn+b,(k,b是實常數(shù)),
則-n2≥kn+b對于任意的n∈N*均成立,
即n2+kn+b≤0對于任意的n∈N*均成立,
與二次函數(shù)的圖象和性質(zhì)相矛盾,
所以,假設(shè)不成立,
所以{an}不存在等差基數(shù)列.…(3分)
(Ⅱ)f(n)=an-bn=,
∵{bn}是{an}的基數(shù)列,
∴f(n)≥0任意的n∈N*均成立,
令 
(1)當(dāng)△≤0時,即:時,題設(shè)成立,
(2)當(dāng)△>0時,即:時,
即二次函數(shù)f(n)的對稱軸在n=1的左端,
此時,題設(shè)成立的等價條件是f(1)≥0,
即:
,
解得,

由(1)(2)可知,
t的取值范圍是. …(8分)
(Ⅲ){bn}是{an}的基數(shù)列?an≥bn(n∈N*)?1-e-n?(n+1)(1-e-n)≥n?n+1≤en
下面用數(shù)學(xué)歸納法證明n+1≤en
①n=1時,1+1=2≤e,成立;
②假設(shè)n=k時,不等式成立,即k+1≤ek,
則n=k+1時,k+1+1≤ek+1<ek+1,不等式也成立,
由①,②得n+1≤en
∴{bn}是{an}的基數(shù)列.
點評:本題考查數(shù)列與函數(shù)的綜合,考查運算求解能力,推理論證能力;考查函數(shù)與方程思想,化歸與轉(zhuǎn)化思想.綜合性強,是高考的重點,易錯點是數(shù)列的知識體系不牢固.解題時要注意數(shù)學(xué)歸納法和反證法的靈活運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

10、對于數(shù)列{an}(n∈N+,an∈N+),若bk為a1,a2,a3…ak中的最大值,則稱數(shù)列{bn}為數(shù)列{an}的“凸值數(shù)列”.如數(shù)列2,1,3,7,5的“凸值數(shù)列”為2,2,3,7,7.由此定義可知,“凸值數(shù)列”為1,3,3,9,9的所有數(shù)列{an}個數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于數(shù)列{an},定義數(shù)列{bm}如下:對于正整數(shù)m,bm是使得不等式an≥m成立的所有n中的最小值. 如{an}是單調(diào)遞增數(shù)列,a3=4,則b4=3;若數(shù)列{an}的通項公式為an=2n-1,n∈N*,則數(shù)列{bm}的通項是
bm=
m+1
2
,m是奇數(shù)
m+2
2
,m是偶數(shù)
bm=
m+1
2
,m是奇數(shù)
m+2
2
,m是偶數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如表定義的函數(shù)f(x),對于數(shù)列{an},a1=4,an=f(an-1),n=2,3,4,…,那么a2006的值是( 。
x 1 2 3 4 5
f(x) 5 4 3 1 2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于數(shù)列{An}:A1,A2,A3,…,An,若不改變A1,僅改變A2,A3,…,An中部分項的符號,得到的新數(shù)列{an}稱為數(shù)列{An}的一個生成數(shù)列.如僅改變數(shù)列1,2,3,4,5的第二、三項的符號可以得到一個生成數(shù)列1,-2,-3,4,5.已知數(shù)列{an}為數(shù)列{
1
2n
}(n∈N*)
的生成數(shù)列,Sn為數(shù)列{an}的前n項和.
(1)寫出S3的所有可能值;
(2)若生成數(shù)列{an}滿足:S3n=
1
7
(1-
1
8n
)
,求{an}的通項公式;
(3)證明:對于給定的n∈N*,Sn的所有可能值組成的集合為:{x|x=
2m-1
2n
,m∈N*,m≤2n-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于數(shù)列{An}:A1,A2,A3,…,An,若不改變A1,僅改變A2,A3,…,An中部分項的符號,得到的新數(shù)列{an}稱為數(shù)列{An}的一個生成數(shù)列.如僅改變數(shù)列1,2,3,4,5的第二、三項的符號可以得到一個生成數(shù)列1,-2,-3,4,5.已知數(shù)列{an}為數(shù)列{
1
2n
}(n∈N*)
的生成數(shù)列,Sn為數(shù)列{an}的前n項和.
(1)寫出S3的所有可能值;
(2)若生成數(shù)列{an}的通項公式為an=
1
2n
,n=3k+1
-
1
2n
,n≠3k+1
,k∈N
,求Sn;
(3)用數(shù)學(xué)歸納法證明:對于給定的n∈N*,Sn的所有可能值組成的集合為:{x|x=
2m-1
2n
,m∈N*,m≤2n-1}

查看答案和解析>>

同步練習(xí)冊答案