已知α∈(),且cos,則tanα( )
A.
B.-
C.-2
D.2
【答案】分析:利用同角三角函數(shù)關(guān)系,先求sinα,進而可求tanα的值.
解答:解:∵α∈(),且cos,
∴sinα=-=-
∴tanα==2
故選D.
點評:本題考查三角函數(shù)求值,正確運用同角三角函數(shù)關(guān)系是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點O為△ABC外接圓的圓心,且精英家教網(wǎng)
OA
+
OB
+
CO
=
0
,則△ABC的內(nèi)角A等于( 。
A、30°B、60°
C、90°D、120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的中心在原點O,焦點在x軸上,點A(-2
3
,0)
是其左頂點,點C在橢圓上,且
AC
CO
=0
,|
AC
|=|
CO
|

(Ⅰ)求橢圓的方程;
(Ⅱ)若平行于CO的直線l和橢圓交于M,N兩個不同點,求△CMN面積的最大值,并求此時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正三棱錐D-ABC的外接球的球心O滿足
OA
+
OB
=
CO
,且外接球的體積為16π,則該三棱錐的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,AB、BC、CD分別與⊙O相切于E、F、G,且AB∥CD,BO=6,CO=8,求OF的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知O為△ABC的外心,a,b,c分別是角A、B、C的對邊,且滿足
CO
AB
=
BO
CA

(1)推導(dǎo)出三邊a,b,c之間的關(guān)系式;
(2)求
tanA
tanB
+
tanA
tanC
的值.

查看答案和解析>>

同步練習(xí)冊答案