正方體ABCD-A1B1C1D1的棱長為4,其中心為O,在正方體內(nèi)任取一點Q,則1≤OQ≤2的概率P=
 
分析:本題利用幾何概型求解.只須求出滿足:1≤OQ≤2的幾何體的體積,再將求得的體積值與整個正方體的體積求比值即得.
解答:精英家教網(wǎng)解:小圓外大圓內(nèi)的部分構(gòu)成的幾何體的體積為:
v=
4
3
π
(23-13)=
28π
3
,
∴1≤OQ≤2的概率:
P=
v
V
=
28π
3
43
=
48

故答案為:
48
點評:本小題主要考查幾何概型、球的體積公式、正方體的體積公式等基礎(chǔ)知識,考查運(yùn)算求解能力,考查空間想象力、化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

正方體ABCD-A1B1C1D1的各頂點均在半徑為1的球面上,則四面體A1-ABC的體積等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是從上下底面處在水平狀態(tài)下的棱長為a的正方體ABCD-A1B1C1D1中分離出來的:
(1)試判斷A1是否在平面B1CD內(nèi);(回答是與否)
(2)求異面直線B1D1與C1D所成的角;
(3)如果用圖示中這樣一個裝置來盛水,那么最多可以盛多少體積的水.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知邊長為6的正方體ABCD-A1B1C1D1,E,F(xiàn)為AD、CD上靠近D的三等分點,H為BB1上靠近B的三等分點,G是EF的中點.
(1)求A1H與平面EFH所成角的正弦值;
(2)設(shè)點P在線段GH上,
GP
GH
=λ,試確定λ的值,使得二面角P-C1B1-A1的余弦值為
10
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在棱長為2cm的正方體ABCD-A1B1C1D1中,A1B1的中點是P,過點A1作出與截面PBC1平行的截面,簡單證明截面形狀,并求該截面的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體ABCD-A1B1C1D1中,M是棱AB的中點,過A1,M,C三點的平面與CD所成角正弦值(  )

查看答案和解析>>

同步練習(xí)冊答案