8.已知點(diǎn)M(2,3)、N(3,4),P為x軸上的動(dòng)點(diǎn),則|PM|+|PN|的最小值為$5\sqrt{2}$.

分析 點(diǎn)M關(guān)于x軸的對(duì)稱點(diǎn)Q(2,-3),可得|PM|+|PN|的最小值為|NQ|.

解答 解:點(diǎn)M關(guān)于x軸的對(duì)稱點(diǎn)Q(2,-3).
則|PM|+|PN|的最小值為|NQ|=$\sqrt{(3-2)^{2}+(4+3)^{2}}$=5$\sqrt{2}$.
故答案為:5$\sqrt{2}$.

點(diǎn)評(píng) 本題考查了點(diǎn)的對(duì)稱性質(zhì)、兩點(diǎn)之間的距離公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)實(shí)數(shù)x,y滿足約束條件$\left\{{\begin{array}{l}{3x+y-6≥0}\\{x-y-2≤0}\\{y-3≤0}\end{array}}\right.$,則目標(biāo)函數(shù)z=y-$\frac{1}{2}x$的最小值為( 。
A.-1B.-2C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知F1,F(xiàn)2是雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左右焦點(diǎn),P為雙曲線右支上一點(diǎn),PF1與以原點(diǎn)為圓心a為半徑的圓相切,切點(diǎn)為M,若$\overrightarrow{OM}$=$\frac{1}{2}$($\overrightarrow{O{F}_{1}}+\overrightarrow{OP}$),那么該雙曲線的離心率為( 。
A.$\sqrt{5}$B.$\frac{\sqrt{5}}{2}$C.$\frac{\sqrt{10}}{2}$D.$\sqrt{5}$-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知函數(shù)f(x)=ln(mex+ne-x)+m為偶函數(shù),且f(0)=2+ln4,則m=2,不等式f(x)≤f(m+n)的解集為{x|-4≤x≤4}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)集合A={x|=$\frac{n}{2}$,n∈Z},B={x|x=n+$\frac{1}{2}$,n∈Z},則下列圖形能表示A與B關(guān)系的是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足$\overrightarrow{a}$=(-2sinx,$\sqrt{3}$(cosx+sinx)),$\overrightarrow$=(cosx,cosx-sinx),函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$(x∈R).
(Ⅰ)求f(x)在[-$\frac{π}{2}$,0]時(shí)的值域;
(Ⅱ)求f(x)的遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.求經(jīng)過(guò)兩條直線l1:x+y-4=0和l2:x-y+2=0的交點(diǎn),
(1)且與直線2x-y-1=0平行的直線方程
(2)且與直線2x-y-1=0垂直的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.函數(shù)f(x)=2x2+x-1,x∈[-5,5],在定義域內(nèi)任取一點(diǎn)x0,使f(x0)≤0的概率是( 。
A.$\frac{3}{20}$B.$\frac{2}{3}$C.$\frac{3}{10}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知sin($\frac{π}{5}$-x)=$\frac{3}{5}$,則cos($\frac{7}{10}$π-x)=$-\frac{3}{5}$..

查看答案和解析>>

同步練習(xí)冊(cè)答案