【題目】已知函數(shù),為的導(dǎo)數(shù).
(Ⅰ)求曲線在點處的切線方程;
(Ⅱ)證明:在區(qū)間上存在唯一零點;
(Ⅲ)設(shè),若對任意,均存在,使得,求實數(shù)的取值范圍.
【答案】(Ⅰ);(Ⅱ)證明見解析;(Ⅲ).
【解析】
(Ⅰ)將代入求出切點坐標(biāo),由題可得,將代入求出切線斜率,進而求出切線方程。
(Ⅱ)設(shè),則,由導(dǎo)函數(shù)研究的單調(diào)性進,而得出答案。
(Ⅲ)題目等價于,易求得,利用單調(diào)性求出的最小值,列不等式求解。
(Ⅰ),所以,即切線的斜率,且,從而曲線在點處的切線方程為.
(Ⅱ)設(shè),則.
當(dāng)時,;當(dāng)時,,所以在單調(diào)遞增,在單調(diào)遞減.
又,故在存在唯一零點.
所以在存在唯一零點.
(Ⅲ)由已知,轉(zhuǎn)化為, 且的對稱軸所以 .
由(Ⅱ)知,在只有一個零點,設(shè)為,且當(dāng)時,;當(dāng)時,,所以在單調(diào)遞增,在單調(diào)遞減.
又,所以當(dāng)時,.
所以,即,因此,的取值范圍是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某健身機構(gòu)統(tǒng)計了去年該機構(gòu)所有消費者的消費金額(單位:元),如下圖所示:
(1)將去年的消費金額超過 3200 元的消費者稱為“健身達人”,現(xiàn)從所有“健身達人”中隨機抽取 2 人,求至少有 1 位消費者,其去年的消費金額超過 4000 元的概率;
(2)針對這些消費者,該健身機構(gòu)今年欲實施入會制,詳情如下表:
會員等級 | 消費金額 |
普通會員 | 2000 |
銀卡會員 | 2700 |
金卡會員 | 3200 |
預(yù)計去年消費金額在內(nèi)的消費者今年都將會申請辦理普通會員,消費金額在內(nèi)的消費者都將會申請辦理銀卡會員,消費金額在內(nèi)的消費者都將會申請辦理金卡會員. 消費者在申請辦理會員時,需-次性繳清相應(yīng)等級的消費金額.該健身機構(gòu)在今年底將針對這些消費者舉辦消費返利活動,現(xiàn)有如下兩種預(yù)設(shè)方案:
方案 1:按分層抽樣從普通會員, 銀卡會員, 金卡會員中總共抽取 25 位“幸運之星”給予獎勵: 普通會員中的“幸運之星”每人獎勵 500 元; 銀卡會員中的“幸運之星”每人獎勵 600 元; 金卡會員中的“幸運之星”每人獎勵 800 元.
方案 2:每位會員均可參加摸獎游戲,游戲規(guī)則如下:從-個裝有 3 個白球、 2 個紅球(球只有顏色不同)的箱子中, 有放回地摸三次球,每次只能摸-個球.若摸到紅球的總數(shù)消費金額/元為 2,則可獲得 200 元獎勵金; 若摸到紅球的總數(shù)為 3,則可獲得 300 元獎勵金;其他情況不給予獎勵. 規(guī)定每位普通會員均可參加 1 次摸獎游戲;每位銀卡會員均可參加 2 次摸獎游戲;每位金卡會員均可參加 3 次摸獎游戲(每次摸獎的結(jié)果相互獨立) .
以方案 2 的獎勵金的數(shù)學(xué)期望為依據(jù),請你預(yù)測哪-種方案投資較少?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)已知(是虛數(shù)單位)是關(guān)于的方程的根,、,求的值;
(2)已知(是虛數(shù)單位)是關(guān)于的方程的一個根,、,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,底面,底面為正方形,,點為正方形內(nèi)部的一點,且,則直線與所成角的余弦值的取值范圍為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )
A. 1盞 B. 3盞 C. 5盞 D. 9盞
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的參數(shù)方程為(為參數(shù)).在以坐標(biāo)原點為極點,軸的正半軸為極軸的極坐標(biāo)系中,曲線: .
(Ⅰ)求曲線的普通方程和的直角坐標(biāo)方程;
(Ⅱ)若與相交于兩點,設(shè)點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
若,求的單調(diào)區(qū)間;
是否存在實數(shù)a,使的最小值為0?若存在,求出a的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列有關(guān)命題的說法正確的是( )
A.命題“若x2=1,則x=1”的否命題為“若x2=1,則x≠1”
B.“x=-1”是“x2-5x-6=0”的必要不充分條件
C.命題“若x=y,則sin x=sin y”的逆否命題為真命題
D.命題“x0∈R使得”的否定是“x∈R,均有x2+x+1<0”
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com