精英家教網(wǎng)已知F是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的左焦點(diǎn),P是橢圓上的一點(diǎn),PF⊥x軸,OP∥AB(O為原點(diǎn)),則該橢圓的離心率是( 。
A、
2
2
B、
2
4
C、
1
2
D、
3
2
分析:先把x=c代入橢圓方程求得y,進(jìn)而求得|PF|,根據(jù)OP∥AB,PF∥OB推斷出△PFO∽△ABO,進(jìn)而根據(jù)相似三角形的性質(zhì)求得
|PF|
|OF|
=
|OB|
|OA|
求得b和c的關(guān)系,進(jìn)而求得a和c的關(guān)系,則離心率可得.
解答:解:把x=c代入橢圓方程求得y=±
b2
a

∴|PF|=
b2
a

∵OP∥AB,PF∥OB
∴△PFO∽△ABO
|PF|
|OF|
=
|OB|
|OA|
,
b2
a
c
=
b
a
,求得b=c
∴a=
b2+c2
=
2
c
∴e=
c
a
=
2
2

故選A
點(diǎn)評(píng):本題主要考查了橢圓的簡(jiǎn)單性質(zhì).考查了學(xué)生綜合分析問題和基本的運(yùn)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知F是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點(diǎn),A是橢圓短軸上的一個(gè)頂點(diǎn),橢圓的離心率為
1
2
,點(diǎn)B在x軸上,AB⊥AF,A、B、F三點(diǎn)確定的圓C恰好與直線x+
3
y+3=0
相切.
(1)求橢圓的方程;
(2)設(shè)O為橢圓的中心,過F點(diǎn)作直線交橢圓于M、N兩點(diǎn),在橢圓上是否存在點(diǎn)T,使得
OM
+
ON
+
OT
=
0
,如果存在,則求點(diǎn)T的坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•溫州二模)已知F是橢圓
x2
a2
+
y2
b2
=1
(a>0,b>0)的左焦點(diǎn),若橢圓上存在點(diǎn)P,使得直線PF與圓x2+y2=b2相切,當(dāng)直線PF的傾斜角為
3
,則此橢圓的離心率是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點(diǎn),A是橢圓短軸上的一個(gè)頂點(diǎn),橢圓的離心率為
1
2
,點(diǎn)B在x軸上,AB⊥AF,A,B,F(xiàn)三點(diǎn)確定的圓C恰好與直線x+
3
y+3=0
相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在過F作斜率為k(k≠0)的直線l交橢圓于M,N兩點(diǎn),P為線段MN的中點(diǎn),設(shè)O為橢圓中心,射線OP交橢圓于點(diǎn)Q,若
OM
+
ON
=
OQ
,若存在求k的值,若不存在則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•上饒一模)已知F是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點(diǎn),A是橢圓短軸上的一個(gè)頂點(diǎn),橢圓的離心率為
1
2
,點(diǎn)B在x軸上,AB⊥AF,A、B、F三點(diǎn)確定的圓C恰好與直線x+
3
y+3=0
相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)O為橢圓的中心,是否存在過F點(diǎn),斜率為k(k∈R,l≠0)且交橢圓于M、N兩點(diǎn)的直線,當(dāng)從O點(diǎn)引出射線經(jīng)過MN的中點(diǎn)P,交橢圓于點(diǎn)Q時(shí),有
OM
+
ON
=
OQ
成立.如果存在,則求k的值;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案