設(shè)點(diǎn)在曲線上,點(diǎn)在曲線上,則的最小值為__________

 

【答案】

【解析】

試題分析:考慮到兩曲線關(guān)于直線y=x對(duì)稱,求丨PQ丨的最小值可轉(zhuǎn)化為求P到直線y=x的最小距離,再利用導(dǎo)數(shù)的幾何意義,求曲線上斜率為1的切線方程,從而得此距離.

解:函數(shù)與函數(shù)互為反函數(shù),圖象關(guān)于對(duì)稱.

函數(shù)上的點(diǎn)到直線的距離為.

設(shè)函數(shù).

由圖象關(guān)于對(duì)稱得:最小值為.

考點(diǎn):反函數(shù).

點(diǎn)評(píng):本題主要考查了互為反函數(shù)的函數(shù)圖象的對(duì)稱性,以及導(dǎo)數(shù)的幾何意義,曲線的切線方程的求法,同時(shí)考查了化歸的思想方法,屬于中檔題.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD是直角梯形,其中DA⊥AB,AD∥BC.PA=2AD=BC=2AB=2
2

(1)求異面直線PC與AD所成角的大;
(2)若平面ABCD內(nèi)有一經(jīng)過(guò)點(diǎn)C的曲線E,該曲線上的任一動(dòng)點(diǎn)Q都滿足PQ與AD所成角的大小恰等PC與AD所成角.試判斷曲線E的形狀并說(shuō)明理由;
(3)在平面ABCD內(nèi),設(shè)點(diǎn)Q是(2)題中的曲線E在直角梯形ABCD內(nèi)部(包括邊界)的一段曲線CG上的動(dòng)點(diǎn),其中G為曲線E和DC的交點(diǎn).以B為圓心,BQ為半徑的圓分別與梯形的邊AB、BC交于M、N兩點(diǎn).當(dāng)Q點(diǎn)在曲線段GC上運(yùn)動(dòng)時(shí),試提出一個(gè)研究有關(guān)四面P-BMN的問(wèn)題(如體積、線面、面面關(guān)系等)并嘗試解決.
(說(shuō)明:本小題將根據(jù)你提出的問(wèn)題的質(zhì)量和解決難度分層評(píng)分;本小題的計(jì)算結(jié)果可以使用近似值,保留3位小數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009年上海市普陀區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

如圖,四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD是直角梯形,其中DA⊥AB,AD∥BC.PA=2AD=BC=2AB=2
(1)求異面直線PC與AD所成角的大。
(2)若平面ABCD內(nèi)有一經(jīng)過(guò)點(diǎn)C的曲線E,該曲線上的任一動(dòng)點(diǎn)Q都滿足PQ與AD所成角的大小恰等PC與AD所成角.試判斷曲線E的形狀并說(shuō)明理由;
(3)在平面ABCD內(nèi),設(shè)點(diǎn)Q是(2)題中的曲線E在直角梯形ABCD內(nèi)部(包括邊界)的一段曲線CG上的動(dòng)點(diǎn),其中G為曲線E和DC的交點(diǎn).以B為圓心,BQ為半徑的圓分別與梯形的邊AB、BC交于M、N兩點(diǎn).當(dāng)Q點(diǎn)在曲線段GC上運(yùn)動(dòng)時(shí),試提出一個(gè)研究有關(guān)四面P-BMN的問(wèn)題(如體積、線面、面面關(guān)系等)并嘗試解決.
(說(shuō)明:本小題將根據(jù)你提出的問(wèn)題的質(zhì)量和解決難度分層評(píng)分;本小題的計(jì)算結(jié)果可以使用近似值,保留3位小數(shù))

查看答案和解析>>

同步練習(xí)冊(cè)答案