已知
C
x
28
=
C
3x-8
28
,則x=
 
考點:組合及組合數(shù)公式
專題:排列組合
分析:根據(jù)組合數(shù)公式的性質(zhì),
C
m
n
=C
n-m
n
得到關(guān)于x的方程解得即可.
解答: 解:由組合數(shù)公式的性質(zhì),
C
m
n
=C
n-m
n
,
C
x
28
=
C
3x-8
28
,
可得:x=3x-8,或x+3x-8=28
解得x=4或x=9
故答案為:4或9
點評:本題主要考查了組合數(shù)公式的性質(zhì),屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

讀該程序圖(其中x滿足:0<x<12)
(1)請寫出該程序表示的函數(shù)關(guān)系式.
(2)若該程序輸出的結(jié)果為6,則輸入的x值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2
3
sinxcosx-2sin2x+1.
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)求f(x)在區(qū)間[0,
π
2
]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線y=
3
2
x與橢圓
x2
a2
+
y2
b2
=1(a>b>0)相交于A、B兩點,過點A作x軸的垂線,垂足恰好是橢圓的一個焦點,則橢圓的離心率是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義R上的奇函數(shù)f(x)滿足f(x+
5
2
)=-
1
f(x)
,若f(1)≥1,f(2014)=
t+3
t-3
,則實數(shù)t的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列四個命題中,所有真命題的序號是
 

①?m∈R,使f(x)=(m-1)x m2-4m+3是冪函數(shù);
②若函數(shù)f(x)滿足f(x+1)=f(x-1),則函數(shù)f(x)周期為2;
③如果a>0且a≠1,那么logaf(x)=logag(x)的充要條件是af(x)=ag(x);
④命題“?x∈R,都有x2-3x-2≥0”的否定是“?x∈R,使得x2-3x-2≤0”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)a、b>0,則min{max{
1
a
1
b
,a2+b2}}=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=cosx,f′(x)是它的導函數(shù),則f′(
π
3
)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若x 
1
2
+x -
1
2
=3,則x
3
2
+x-
3
2
=
 

查看答案和解析>>

同步練習冊答案