【題目】已知實(shí)數(shù),函數(shù),

1)討論函數(shù)的單調(diào)性;

2)若是函數(shù)的極值點(diǎn),曲線在點(diǎn),處的切線分別為,且軸上的截距分別為.若,求的取值范圍.

【答案】1)當(dāng)時(shí),上單調(diào)遞減;當(dāng)時(shí),上單調(diào)遞減,在上單調(diào)遞增;(2

【解析】

1)求導(dǎo)后得;分別在兩種情況下,根據(jù)的符號(hào)可確定的單調(diào)性;

(2)由極值點(diǎn)定義可構(gòu)造方程求得,得到;根據(jù)導(dǎo)數(shù)的幾何意義可求得在處的切線方程,進(jìn)而求得;由可求得的關(guān)系,同時(shí)確定的取值范圍;將化為,令,利用導(dǎo)數(shù)可求得的單調(diào)性,進(jìn)而求得的值域即為的范圍.

(1).

,,.

①當(dāng),即時(shí),,上單調(diào)遞減;

②當(dāng),即時(shí),

當(dāng)時(shí),;當(dāng)時(shí),,

上單調(diào)遞減,在上單調(diào)遞增.

綜上所述:當(dāng)時(shí),上單調(diào)遞減;當(dāng)時(shí),上單調(diào)遞減,在上單調(diào)遞增.

(2)的極值點(diǎn),,即,

解得:(舍),此時(shí),.

方程為:,

,得:;同理可得:.

,,整理得:,,

,則,解得:,

.

,則

設(shè),,

上單調(diào)遞增,又,

的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù))。在極坐標(biāo)系(與直角坐標(biāo)系取相同的長(zhǎng)度單位,且以原點(diǎn)為極點(diǎn),以軸正半軸為極軸)中,圓的極坐標(biāo)方程為。

1)求直線的普通方程和圓的直角坐標(biāo)方程;

2)設(shè)圓與直線交于,兩點(diǎn),若點(diǎn)的坐標(biāo)為,求。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,,.

(Ⅰ)求證:;

(Ⅱ)若平面平面,且直線與平面所成角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為自然對(duì)數(shù)的底數(shù))在上有兩個(gè)零點(diǎn),則的范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修4-4:極坐標(biāo)與參數(shù)方程]

在直角坐標(biāo)系中,曲線的參數(shù)方程為是參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

(2)若射線 與曲線交于,兩點(diǎn),與曲線交于,兩點(diǎn),求取最大值時(shí)的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱中,,的中點(diǎn),.

(Ⅰ)求證:平面;

(Ⅱ)異面直線所成角的余弦值為,求幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若,求的極大值;

2)證明:當(dāng)時(shí),恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“干支紀(jì)年法”是中國(guó)歷法上自古以來(lái)就一直使用的紀(jì)年方法.其中干支是天干:甲、乙、丙、丁、戊、已、庚、辛、壬、癸十個(gè)符號(hào);地支:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥十二個(gè)符號(hào).把干支順序相配正好六十為一周,周而復(fù)始,循環(huán)記錄,即甲子、乙丑、丙寅、…….2020年是“庚子年”,則我國(guó)建國(guó)一百周年(2049年)是_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的圖象在點(diǎn)處的切線方程;

(2)若上有解,求的取值范圍;

(3)設(shè)是函數(shù)的導(dǎo)函數(shù),是函數(shù)的導(dǎo)函數(shù),若函數(shù)的零點(diǎn)為,則點(diǎn)恰好就是該函數(shù)的對(duì)稱(chēng)中心.試求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案