【題目】已知函數(shù).
(1)若,求的極大值;
(2)證明:當(dāng)時(shí),在恒成立.
【答案】(1);(2)證明見詳解.
【解析】
(1)對(duì)函數(shù)求導(dǎo),令導(dǎo)數(shù)為零,劃分函數(shù)的單調(diào)區(qū)間,根據(jù)單調(diào)性即可求得函數(shù)的極大值;
(2)對(duì)參數(shù)進(jìn)行分類討論,要證在區(qū)間恒成立,即證恒成立;故而在參數(shù)的不同情況下,求得函數(shù)的最小值,通過證明函數(shù)的最小值大于等于零,從而證明恒成立.
(1)當(dāng)時(shí),
故,
令,解得,
故當(dāng)時(shí),,單調(diào)遞增;
當(dāng)時(shí),,單調(diào)遞減;
當(dāng)時(shí),,單調(diào)遞增;
故的極大值為.
(2)因?yàn)?/span>,
故可得
因?yàn)?/span>,故;
故①當(dāng)時(shí),,則在區(qū)間恒成立,且不恒為零,
則在區(qū)間上單調(diào)遞增,
則>0
故當(dāng)時(shí),在區(qū)間上恒成立;
②當(dāng)時(shí),令,解得,
故在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,
則
令,
則,則,
因?yàn)?/span>,故
即可得在區(qū)間上恒成立,
故在區(qū)間上單調(diào)遞減,
則,故在區(qū)間上恒成立,
則在區(qū)間上單調(diào)遞減,
則,
也即函數(shù)在區(qū)間上恒成立,
故當(dāng)時(shí),恒成立.
也即時(shí),在區(qū)間上恒成立.
綜上所述:當(dāng)時(shí),在區(qū)間上恒成立.
即證.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一正方體的棱長為,作一平面與正方體一條體對(duì)角線垂直,且與正方體每個(gè)面都有公共點(diǎn),記這樣得到的截面多邊形的周長為,則( )
A.B.C.D.以上都不正確
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,設(shè)平面區(qū)域,若圓心,且圓與軸相切,則的最小值為__________,的最大值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知實(shí)數(shù),函數(shù),.
(1)討論函數(shù)的單調(diào)性;
(2)若是函數(shù)的極值點(diǎn),曲線在點(diǎn),處的切線分別為,且在軸上的截距分別為.若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)與的圖象關(guān)于點(diǎn)對(duì)稱.
(1)求函數(shù)的解析式;
(2)若函數(shù)有兩個(gè)不同零點(diǎn),求實(shí)數(shù)的取值范圍;
(3)若函數(shù)在上是單調(diào)減函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐P﹣ABCD中,底面ABCD為平行四邊形,PD⊥平面ABCD,BD=CD,E,F分別為BC,PD的中點(diǎn).
(1)求證:EF∥平面PAB;
(2)求證:平面PBC⊥平面EFD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】曲線C的參數(shù)方程為(為參數(shù),),以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線與直線交于點(diǎn)P,動(dòng)點(diǎn)Q在射線OP上,且滿足|OQ||OP|=8.
(1)求曲線C的普通方程及動(dòng)點(diǎn)Q的軌跡E的極坐標(biāo)方程;
(2)曲線E與曲線C的一條漸近線交于P1,P2兩點(diǎn),且|P1P2|=2,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)F為拋物線C:()的焦點(diǎn),過點(diǎn)F的動(dòng)直線l與拋物線C交于M,N兩點(diǎn),且當(dāng)直線l的傾斜角為45°時(shí),.
(1)求拋物線C的方程.
(2)試確定在x軸上是否存在點(diǎn)P,使得直線PM,PN關(guān)于x軸對(duì)稱?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com