經(jīng)市場調(diào)查,某旅游城市在過去的一個月內(nèi)(以30天計),旅游人數(shù)f(t)(萬人)與時間t(天)的函數(shù)關(guān)系近似滿足f(t)=4+,人均消費(fèi)g(t)(元)與時間t(天)的函數(shù)關(guān)系近似滿足g(t)=115-|t-15|.
(1)求該城市的旅游日收益w(t)(萬元)與時間t(1≤t≤30,t∈N*)的函數(shù)關(guān)系式;
(2)求該城市旅游日收益的最小值(萬元).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=mx+3,g(x)=x2+2x+m.
(1)求證:函數(shù)f(x)-g(x)必有零點(diǎn);
(2)設(shè)函數(shù)G(x)=f(x)-g(x)-1,若|G(x)|在[-1,0]上是減函數(shù),求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=x2+bx+c(b,c∈R),對任意的x∈R,恒有f′(x)≤f(x).
(1)證明:當(dāng)x≥0時,f(x)≤(x+c)2;
(2)若對滿足題設(shè)條件的任意b,c,不等式f(c)-f(b)≤M(c2-b2)恒成立,求M的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=的圖象過原點(diǎn),且關(guān)于點(diǎn)(-1,2)成中心對稱.
(1)求函數(shù)f(x)的解析式;
(2)若數(shù)列{an}滿足a1=2,an+1=f(an),試證明數(shù)列為等比數(shù)列,并求出數(shù)列{an}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某鎮(zhèn)政府為了更好地服務(wù)于農(nóng)民,派調(diào)查組到某村考察.據(jù)了解,該村有100戶農(nóng)民,且都從事蔬菜種植,平均每戶的年收入為3萬元.為了調(diào)整產(chǎn)業(yè)結(jié)構(gòu),該鎮(zhèn)政府決定動員部分農(nóng)民從事蔬菜加工.據(jù)估計,若能動員x(x>0)戶農(nóng)民從事蔬菜加工,則剩下的繼續(xù)從事蔬菜種植的農(nóng)民平均每戶的年收入有望提高2x%,而從事蔬菜加工的農(nóng)民平均每戶的年收入將為3 (a>0)萬元.
(1)在動員x戶農(nóng)民從事蔬菜加工后,要使從事蔬菜種植的農(nóng)民的總年收入不低于動員前從事蔬菜種植的農(nóng)民的總年收入,求x的取值范圍;
(2)在(1)的條件下,要使這100戶農(nóng)民中從事蔬菜加工的農(nóng)民的總年收入始終不高于從事蔬菜種植的農(nóng)民的總年收入,求a的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
現(xiàn)有A,B兩個投資項(xiàng)目,投資兩項(xiàng)目所獲得利潤分別是和(萬元),它們與投入資金(萬元)的關(guān)系依次是:其中與平方根成正比,且當(dāng)為4(萬元)時為1(萬元),又與成正比,當(dāng)為4(萬元)時也是1(萬元);某人甲有3萬元資金投資.
(1)分別求出,與的函數(shù)關(guān)系式;
(2)請幫甲設(shè)計一個合理的投資方案,使其獲利最大,并求出最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的圖象在點(diǎn)(e為自然對數(shù)的底數(shù))處取得極值-1.
(1)求實(shí)數(shù)的值;
(2)若不等式對任意恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某種海洋生物身體的長度(單位:米)與生長年限t(單位:年)
滿足如下的函數(shù)關(guān)系:.(設(shè)該生物出生時t=0)
(1)需經(jīng)過多少時間,該生物的身長超過8米;
(2)該生物出生后第3年和第4年各長了多少米?并據(jù)此判斷,這2年中哪一年長得更快.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com