已知函數(shù)的圖象在點(diǎn)(e為自然對(duì)數(shù)的底數(shù))處取得極值-1.
(1)求實(shí)數(shù)的值;
(2)若不等式對(duì)任意恒成立,求的取值范圍.
(1)-2;(2)
解析試題分析:(1)因?yàn)楹瘮?shù)的圖象在點(diǎn)(e為自然對(duì)數(shù)的底數(shù))處取得極值-1,所以時(shí)導(dǎo)函數(shù)的值為零.即可求出的值.
(2)因?yàn)椴坏仁?img src="http://thumb.zyjl.cn/pic5/tikupic/54/2/zbxtm.png" style="vertical-align:middle;" />對(duì)任意恒成立,所以寫(xiě)出等價(jià)的不等式,從而轉(zhuǎn)化為求函數(shù)的在時(shí)的最小值的問(wèn)題.所以通過(guò)對(duì)函數(shù)的求導(dǎo),觀察發(fā)現(xiàn)函數(shù)的單調(diào)性即可得到函數(shù)的在范圍的最小值.從而得到結(jié)論.
試題解析:(1)解:因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ce/3/1azw23.png" style="vertical-align:middle;" />,所以
因?yàn)楹瘮?shù)的圖像在點(diǎn)處取得極值,
所以. 4分
(2)解:由(1)知,,
所以對(duì)任意恒成立,即對(duì)任意恒成立.
令,則,
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/b8/b/evdxn2.png" style="vertical-align:middle;" />,所以,
所以函數(shù)在上為增函數(shù),
則,
所以. 12分
考點(diǎn):1.函數(shù)的極值.2.函數(shù)的最值問(wèn)題.3.不等式的恒成立問(wèn)題.4.數(shù)形結(jié)合的思想.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知兩函數(shù)f(x)=8x2+16x-k,g(x)=2x3+5x2+4x,其中k為實(shí)數(shù).
(1)對(duì)任意x∈[-3,3]都有f(x)≤g(x)成立,求k的取值范圍.
(2)存在x∈[-3,3]使f(x)≤g(x)成立,求k的取值范圍.
(3)對(duì)任意x1,x2∈[-3,3]都有f(x1)≤g(x2),求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
經(jīng)市場(chǎng)調(diào)查,某旅游城市在過(guò)去的一個(gè)月內(nèi)(以30天計(jì)),旅游人數(shù)f(t)(萬(wàn)人)與時(shí)間t(天)的函數(shù)關(guān)系近似滿足f(t)=4+,人均消費(fèi)g(t)(元)與時(shí)間t(天)的函數(shù)關(guān)系近似滿足g(t)=115-|t-15|.
(1)求該城市的旅游日收益w(t)(萬(wàn)元)與時(shí)間t(1≤t≤30,t∈N*)的函數(shù)關(guān)系式;
(2)求該城市旅游日收益的最小值(萬(wàn)元).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),
(1)若曲線與在公共點(diǎn)處有相同的切線,求實(shí)數(shù)、的值;
(2)當(dāng)時(shí),若曲線與在公共點(diǎn)處有相同的切線,求證:點(diǎn)唯一;
(3)若,,且曲線與總存在公切線,求正實(shí)數(shù)的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
若函數(shù)f(x)對(duì)任意的實(shí)數(shù)x1,x2∈D,均有|f(x2)-f(x1)|≤|x2-x1|,則稱函數(shù)f(x)是區(qū)間D上的“平緩函數(shù)”.
(1)判斷g(x)=sin x和h(x)=x2-x是不是實(shí)數(shù)集R上的“平緩函數(shù)”,并說(shuō)明理由;
(2)若數(shù)列{xn}對(duì)所有的正整數(shù)n都有|xn+1-xn|≤,設(shè)yn=sin xn,求證:|yn+1-y1|<.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f1/c/1nfj53.png" style="vertical-align:middle;" />,且的圖象連續(xù)不間斷. 若函數(shù)滿足:對(duì)于給定的(且),存在,使得,則稱具有性質(zhì).
(1)已知函數(shù),,判斷是否具有性質(zhì),并說(shuō)明理由;
(2)已知函數(shù) 若具有性質(zhì),求的最大值;
(3)若函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f1/c/1nfj53.png" style="vertical-align:middle;" />,且的圖象連續(xù)不間斷,又滿足,
求證:對(duì)任意且,函數(shù)具有性質(zhì).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
心理學(xué)家通過(guò)研究學(xué)生的學(xué)習(xí)行為發(fā)現(xiàn);學(xué)生的接受能力與老師引入概念和描述問(wèn)題所用的時(shí)間相關(guān),教學(xué)開(kāi)始時(shí),學(xué)生的興趣激增,學(xué)生的興趣保持一段較理想的狀態(tài),隨后學(xué)生的注意力開(kāi)始分散,分析結(jié)果和實(shí)驗(yàn)表明,用表示學(xué)生掌握和接受概念的能力, x表示講授概念的時(shí)間(單位:min),可有以下的關(guān)系:
(1)開(kāi)講后第5min與開(kāi)講后第20min比較,學(xué)生的接受能力何時(shí)更強(qiáng)一些?
(2)開(kāi)講后多少min學(xué)生的接受能力最強(qiáng)?能維持多少時(shí)間?
(3)若一個(gè)新數(shù)學(xué)概念需要55以上(包括55)的接受能力以及13min時(shí)間,那么老師能否在學(xué)生一直達(dá)到所需接受能力的狀態(tài)下講授完這個(gè)概念?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
噪聲污染已經(jīng)成為影響人們身體健康和生活質(zhì)量的嚴(yán)重問(wèn)題.實(shí)踐證明,聲音強(qiáng)度(分貝)由公式(為非零常數(shù))給出,其中為聲音能量.
(1)當(dāng)聲音強(qiáng)度滿足時(shí),求對(duì)應(yīng)的聲音能量滿足的等量關(guān)系式;
(2)當(dāng)人們低聲說(shuō)話,聲音能量為時(shí),聲音強(qiáng)度為30分貝;當(dāng)人們正常說(shuō)話,聲音能量為時(shí),聲音強(qiáng)度為40分貝.當(dāng)聲音能量大于60分貝時(shí)屬于噪音,一般人在100分貝~120分貝的空間內(nèi),一分鐘就會(huì)暫時(shí)性失聰.問(wèn)聲音能量在什么范圍時(shí),人會(huì)暫時(shí)性失聰.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知點(diǎn),點(diǎn)在曲線:上.
(1)若點(diǎn)在第一象限內(nèi),且,求點(diǎn)的坐標(biāo);
(2)求的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com