(本題滿分12分)設(shè)橢圓C的中心在坐標原點O,焦點在x軸上,短軸長為,左焦點到左準線的距離為
.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)橢圓C上有不同兩點P、Q,且OP⊥OQ,過P、Q的直線為l,求點O到直線l的距離.
解 (1)設(shè)橢圓C的方程為(a>b>0),
則 ,
.
由 ,即
,得
.
于是 a2 = b2 + c2 = 21 + 7 = 28,橢圓C的方程為.………………… 5分
(2)若直線l的斜率不存在,即l⊥x軸時,不妨設(shè)l與x正半軸交于點M,將x = y代入中,得
,則點P(
,
),Q(
,
),于是點O到l的距離為
. …………………… 7分
若直線l的斜率存在,設(shè)l的方程為y = kx + m(k,m∈R),則點P(x1,y1),Q(x2,y2)的坐標是方程組的兩個實數(shù)解,
消去y,整理,得(3 + 4k2)x2 + 8kmx + 4m2-84 = 0,
∴ △ =(8km)2-4(3 + 4k2)(4m2-84)= 12(28k2-m2 + 21)>0, ①
,
. ②
…………………… 9分
∵ OP⊥OQ,∴ kOP · kOQ =-1,即 ,x1x2 + y1y2 = 0.
于是 x1x2 +(kx1 + m)(kx2 + m)=(1 + k2)x1x2 + km(x1 + x2)+ m2 = 0. ③
將 x1 + x2,x1x2 代入上式,得 ,
∴(k2 + 1)(4m2-84)-8k2m2 + m2(4k2 + 3)= 0,
化簡,得 m2 = 12(k2 + 1). ④
④代入①滿足,因此原點O到直線l的距離 .
…………………… 12分
科目:高中數(shù)學 來源:2014屆吉林省吉林市高二上學期期中理科數(shù)學試卷(解析版) 題型:解答題
(本題滿分12分)
設(shè)命題:實數(shù)
滿足
, 命題
:實數(shù)
滿足
.
當為真,求實數(shù)
的取值范圍;
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年河北省石家莊市高三暑期第二次考試理科數(shù)學試卷(解析版) 題型:解答題
(本題滿分12分)設(shè)函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若對
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年湖北省高三十一月份階段性考試理科數(shù)學 題型:解答題
(本題滿分12分)設(shè)函數(shù),其中
。
(Ⅰ)當時,求不等式
的解集;
(Ⅱ)若不等式的解集為
,求a的值。
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆黑龍江省高一上學期期末考試理科數(shù)學 題型:解答題
(本題滿分12分)
設(shè)向量
(1)若與
垂直,求
的值
(2)求的最大值;
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011年云南省高二上學期期末數(shù)學理卷 題型:解答題
(本題滿分12分)
設(shè),
分別是橢圓
:
的左、右焦點,過
斜率為1的直線
與
相交于
、
兩點,且
,
,
成等差數(shù)列,
(Ⅰ)求的離心率;
(Ⅱ)設(shè)點滿足
,求
的方程。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com