分析 (1)利用$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$即可把曲線C1的極坐標(biāo)方程化為直角坐標(biāo)方程,由于曲線C1關(guān)于曲線C2對(duì)稱,可得圓心在C2上,即可解出.
(2)由已知可得|OA|=2$\sqrt{2}$sin(φ+$\frac{π}{4}$),|OB|=2$\sqrt{2}$sin(φ+$\frac{π}{2}$),|OC|=2$\sqrt{2}$sinφ,|OD|=2$\sqrt{2}$sin(φ+$\frac{3π}{4}$),化簡(jiǎn)整理即可得出.
解答 解:(1)曲線C1的極坐標(biāo)方程為ρ=2$\sqrt{2}$sin(θ+$\frac{π}{4}$),展開為${ρ}^{2}=2\sqrt{2}×\frac{\sqrt{2}}{2}$(ρsinθ+ρcosθ),可得直角坐標(biāo)方程:x2+y2=2x+2y,化為(x-1)2+(y-1)2=2,
∵曲線C1關(guān)于曲線C2對(duì)稱,∴圓心(1,1)在C2上,∴$\left\{\begin{array}{l}{1=-1+tcosα}\\{1=3+tsinα}\end{array}\right.$,化為tanα=-1,解得α=$\frac{3π}{4}$.
∴C2:為y-3=-1(x+1),化為x+y-2=0.
(2)|OA|=2$\sqrt{2}$sin(φ+$\frac{π}{4}$),|OB|=2$\sqrt{2}$sin(φ+$\frac{π}{2}$),|OC|=2$\sqrt{2}$sinφ,|OD|=2$\sqrt{2}$sin(φ+$\frac{3π}{4}$),
∴|OA|•|OC|+|OB|•|OD|=8sinφsin(φ+$\frac{π}{4}$)+8cosφsin(φ+$\frac{3π}{4}$)=8sinφsin(φ+$\frac{π}{4}$)+8cosφcos(φ+$\frac{π}{4}$)=8cos$\frac{π}{4}$=4$\sqrt{2}$.
點(diǎn)評(píng) 本題考查了極坐標(biāo)化為直角坐標(biāo)方程的方法、三角函數(shù)化簡(jiǎn)求值、直線的參數(shù)方程應(yīng)用,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 相離 | B. | 相切 | ||
C. | 直線過圓心 | D. | 相交但直線不過圓心 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,2] | B. | $[\frac{3}{2},2]$ | C. | $[\frac{3}{2},+∞)$ | D. | $(\frac{3}{2},+∞)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com