已知O為平面直角坐標(biāo)系的原點(diǎn),過點(diǎn)M(-2,0)的直線l與圓x+y=1交于P、Q兩點(diǎn),且
(Ⅰ)求∠PDQ的大;
(Ⅱ)求直線l的方程.
(Ⅰ)∠POQ=120°.(Ⅱ) .

試題分析:(Ⅰ)因?yàn)镻、Q兩點(diǎn)在圓x+y=1上,所以,
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020241850705.png" style="vertical-align:middle;" />,
所以
所以∠POQ=120°.                   5分
(Ⅱ)依題意,直線l的斜率存在,
因?yàn)橹本l過點(diǎn)M(-2,0),可設(shè)直線l:y=k(x+2).
由(Ⅰ)可知O到直線l的距離等于
所以

所以直線的方程為                         9分
點(diǎn)評(píng):中檔題,中檔題,曲線關(guān)系問題,往往通過聯(lián)立方程組,得到一元二次方程,運(yùn)用韋達(dá)定理。恰當(dāng)?shù)倪\(yùn)用圓中的“特征三角形”,轉(zhuǎn)化成點(diǎn)到直線的距離問題,更為簡(jiǎn)潔。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

對(duì)于以下結(jié)論:
①.對(duì)于是奇函數(shù),則;
②.已知:事件是對(duì)立事件;:事件是互斥事件;則的必要但不充分條件;
③.(為自然對(duì)數(shù)的底);
④.若,,則上的投影為;
⑤.若隨機(jī)變量,則.
其中,正確結(jié)論的序號(hào)為___________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)為拋物線 ()的焦點(diǎn),為該拋物線上三點(diǎn),若,且
(Ⅰ)求拋物線的方程;
(Ⅱ)點(diǎn)的坐標(biāo)為(,)其中,過點(diǎn)F作斜率為的直線與拋物線交于兩點(diǎn),、兩點(diǎn)的橫坐標(biāo)均不為,連結(jié)、并延長(zhǎng)交拋物線于兩點(diǎn),設(shè)直線的斜率為.若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在四邊形中,,,則該四邊形的面積為(  )
A.B.C.5D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知O是△ABC內(nèi)一點(diǎn),若,則△AOC與△ABC的面積的比值為                                             (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知O是內(nèi)部一點(diǎn),的面積為(   )   
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)已知,
當(dāng)時(shí),有<0 恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖在平行六面體中,,,則的長(zhǎng)是           

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知O是銳角△ABC的外接圓圓心,∠A=60°,,則m的值為(   )
A.B.C.1D.

查看答案和解析>>

同步練習(xí)冊(cè)答案