【題目】已知函數(shù)f(x)=x2+m與函數(shù) 的圖象上至少存在一對關(guān)于x軸對稱的點,則實數(shù)m的取值范圍是(
A.
B.
C.
D.[2﹣ln2,2]

【答案】D
【解析】解:由已知,得到方程x2+m=ln +3xm=﹣lnx+3x﹣x2在[ ,2]上有解. 設f(x)=﹣lnx+3x﹣x2 ,
求導得:f′(x)=﹣ +3﹣2x=﹣ =﹣ ,
≤x≤2,
令f′(x)=0,解得x= 或x=1,
當f′(x)>0時, <x<1函數(shù)單調(diào)遞增,
當f′(x)<0時,1<x<2函數(shù)單調(diào)減,
∴在x=1有唯一的極值點,
∵f( )=ln2+ ,f(2)=﹣ln2+2,f(x)極大值=f(1)=2,且知f(2)<f( ),
故方程m=﹣lnx+3x﹣x2在[ ,2]上有解等價于2﹣ln2≤m≤2.
從而m的取值范圍為[2﹣ln2,2].
故選:D.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)招聘中,依次進行A科、B科考試,當A科合格時,才可考B科,且兩科均有一次補考機會,兩科都合格方通過.甲參加招聘,已知他每次考A科合格的概率均為 ,每次考B科合格的概率均為 .假設他不放棄每次考試機會,且每次考試互不影響.
(I)求甲恰好3次考試通過的概率;
(II)記甲參加考試的次數(shù)為ξ,求ξ的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某單位為綠化環(huán)境,移栽了甲、乙兩種大樹各2株.設甲、乙兩種大樹移栽的成活率分別為 ,且各株大樹是否成活互不影響.求移栽的4株大樹中:
(1)兩種大樹各成活1株的概率;
(2)成活的株數(shù)ξ的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系 中,直線 的參數(shù)方程為 為參數(shù)),以原點為極點, 軸正半軸為極軸建立極坐標系,圓 的極坐標方程為 .
(1)寫出直線 的普通方程及圓 的直角坐標方程;
(2)點 是直線 上的點,求點 的坐標,使 到圓心 的距離最小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知不等式|x+3|﹣2x﹣1<0的解集為(x0 , +∞)
(Ⅰ)求x0的值;
(Ⅱ)若函數(shù)f(x)=|x﹣m|+|x+ |﹣x0(m>0)有零點,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知單調(diào)遞增的等比數(shù)列滿足,且的等差中項.

(Ⅰ)求數(shù)列的通項公式;

(Ⅱ)若,對任意正數(shù)數(shù) 恒成立,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某漁船在航行中不幸遇險,發(fā)出呼叫信號,我海軍艦艇在處獲悉后,立即測出該漁船在方位角(從指北方向順時針轉(zhuǎn)到目標方向線的水平角)為,距離為15海里的處,并測得漁船正沿方位角為的方向,以15海里/小時的速度向小島靠攏,我海軍艦艇立即以海里/小時的速度前去營救,求艦艇靠近漁船所需的最少時間和艦艇的航向.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某機構(gòu)為了解某市民用電情況,抽查了該市100戶居民月均用電量(單位:分組的頻率分布直方圖如圖所示.

(1)求樣本中月均用電量為的用戶數(shù)量;

(2)估計月均用電量的中位數(shù);

(3)在月均用電量為的四組用戶中,用分層抽樣的方法抽取22戶居民,則月均用電量為的用戶中應該抽取多少戶?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設 是定義在 上的奇函數(shù),且對任意實數(shù) ,恒有 .當 時, .
(1)求證: 是周期函數(shù);
(2)當 時,求 的解析式;
(3)計算 .

查看答案和解析>>

同步練習冊答案