已知函數(shù)y=f(x)的圖象如圖所示,則函數(shù)y=f′(x)的圖象可能是
 
(填序號)
考點:利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用,導(dǎo)數(shù)的綜合應(yīng)用
分析:觀察函數(shù)y=f(x)的圖象知,f(x)在(-∞,0]上是增函數(shù),在[0,+∞)上是減函數(shù);從而確定導(dǎo)數(shù)的正負,從而求解.
解答: 解:觀察函數(shù)y=f(x)的圖象知,
f(x)在(-∞,0]上是增函數(shù),在[0,+∞)上是減函數(shù);
故當(dāng)x∈(-∞,0]時,f′(x)>0,
當(dāng)x∈[0,+∞)時,f′(x)<0;
故結(jié)合四個圖象知,第②個可能;
故答案為:②.
點評:本題考查了導(dǎo)數(shù)的綜合應(yīng)用,同時考查了數(shù)形結(jié)合的思想應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

計算:(x 
1
2
-y 
1
2
)÷(x 
1
4
-y 
1
4
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex-a(x-1),其中,a∈R,e是自然對數(shù)的底數(shù).
(1)當(dāng)a=-1時,求函數(shù)f(x)在點(1,f(1))處的切線方程;
(2)討論函數(shù)f(x)的單調(diào)性,并寫出相應(yīng)的單調(diào)區(qū)間;
(3)已知b∈R,若函數(shù)f(x)≥b對任意x∈R都成立,求ab的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓心C在x軸上的圓過點A(2,2)和B(4,0).
(1)求圓C的方程;
(2)求過點M(4,6)且與圓C相切的直線方程;
(3)已知線段PQ的端點Q的坐標(biāo)為(3,5),端點P在圓C上運動,求線段PQ的中點N的軌跡.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

證明:當(dāng)x≥0時,cosx≥1-
1
2
x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,一簡單幾何體ABCDE的一個面ABC內(nèi)接于圓O,G、H分別是AE、BC的中點,AB是圓O的直徑,四邊形DCBE為平行四邊形,且DC⊥平面ABC.
(Ⅰ)證明:GH∥平面ACD;
(Ⅱ)若AC=BC=BE=2,求二面角O-CE-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=1nx一ax2+(2-a)x,試討論函數(shù)f(x)的單凋性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0),過其右焦點F且與該雙曲線一漸近線平行的直線分別與雙曲線的右支和另一條漸近線交于A、B兩點,且
FB
=2
FA
,則雙曲線的離心率為(  )
A、3
B、2
C、
3
D、
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,某住宅小區(qū)有一個矩形休閑廣場ABCD,其中AB=40 米,BC=30 米,根據(jù)小區(qū)業(yè)主建議,需將其擴大成矩形區(qū)域EFGH,要求A、B、C、D四個點分別在矩形EFGH的四條邊(不含頂點)上.設(shè)∠BAE=θ,EF長為y米.
(1)將y表示成θ的函數(shù);
(2)求矩形區(qū)域EFGH的面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案