精英家教網 > 高中數學 > 題目詳情

已知{an}為等比數列,a3=2,a2+a4.求{an}的通項公式.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設{an}為等比數例,Tn=na1+(n-1)a2…+2an-1+an,已知T1=1,T2=4,
(1)求數列{an}的首項和公比;
(2)求數列{Tn}的通項公式.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年貴州省遵義四中高三(上)第二次月考數學試卷(理科)(解析版) 題型:解答題

設{an}為等比數例,Tn=na1+(n-1)a2…+2an-1+an,已知T1=1,T2=4,
(1)求數列{an}的首項和公比;
(2)求數列{Tn}的通項公式.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年貴州省遵義四中高三(上)第二次月考數學試卷(文科)(解析版) 題型:解答題

設{an}為等比數例,Tn=na1+(n-1)a2…+2an-1+an,已知T1=1,T2=4,
(1)求數列{an}的首項和公比;
(2)求數列{Tn}的通項公式.

查看答案和解析>>

科目:高中數學 來源:2011-2012學年貴州省遵義四中高三(上)第二次月考數學試卷(理科)(解析版) 題型:解答題

設{an}為等比數例,Tn=na1+(n-1)a2…+2an-1+an,已知T1=1,T2=4,
(1)求數列{an}的首項和公比;
(2)求數列{Tn}的通項公式.

查看答案和解析>>

科目:高中數學 來源:2011年高三數學復習(第6章 數列):6.3 等差數列、等比數列(二)(解析版) 題型:解答題

設{an}為等比數例,Tn=na1+(n-1)a2…+2an-1+an,已知T1=1,T2=4,
(1)求數列{an}的首項和公比;
(2)求數列{Tn}的通項公式.

查看答案和解析>>

同步練習冊答案