【題目】如圖,在多面體中,四邊形為直角梯形, , , ,四邊形為矩形.

(1)求證:平面平面

(2)線段上是否存在點,使得二面角的大小為?若存在,確定點的位置并加以證明.

【答案】1)見解析(2為線段的中點

【解析】試題分析:(1)先根據(jù)勾股定理得,再由矩形性質(zhì)得,由線面垂直判定定理得,最后根據(jù)面面垂直判定定理得結(jié)論 (2)根據(jù)條件建立空間直角坐標系,設(shè)立各點坐標,根據(jù)方程組解各平面法向量,根據(jù)向量數(shù)量積兩法向量夾角,最后根據(jù)二面角與向量夾角相等或互補關(guān)系求點坐標,即得點的位置

試題解析:1證明:由平面幾何的知識,易得, ,

,所以在中,滿足,所以為直角三角形,且.

因為四邊形為矩形,

所以.

, ,

可得 .

所以平面 平面.

2)存在點,使得二面角為大小為,點為線段的中點.

事實上,以為原點, 軸, 軸,過作平面的垂線為軸,建立空間直角坐標系,

,

設(shè),由,

,得.

設(shè)平面的一個法向量為,

,即,

不妨設(shè),取.

平面的一個法向量為.

二面角為大小為

于是.

解得 (舍去).

所以當點為線段的中點時,二面角為大小為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,a,b,c分別為A,B,C所對邊,a+b=4,(2﹣cosA)tan =sinA.
(1)求邊長c的值;
(2)若E為AB的中點,求線段EC的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的頂點是坐標原點,焦點軸的正半軸上,過焦點且斜率為的直線與拋物線交于兩點,且滿足.

1)求拋物線的方程;

(2)已知為拋物線上一點,若點位于軸下方且,的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近年來城市共享單車的投放在我國各地迅猛發(fā)展,共享單車為人們出行提供了很大的便利,但也給城市的管理帶來了一些困難,現(xiàn)某城市為了解人們對共享單車投放的認可度,對年齡段的人群隨機抽取人進行了一次你是否贊成投放共享單車的問卷調(diào)查,根據(jù)調(diào)查結(jié)果得到如下統(tǒng)計表和各年齡段人數(shù)頻率分布直方圖:

組號

分組

贊成投放的人數(shù)

贊成投放的人數(shù)占本組的頻率

第一組

第二組

第三組

第四組

第五組

第六組

)求, , 的值.

)在第四、五、六組贊成投放共享單車的人中,用分層抽樣的方法抽取人參加共享單車騎車體驗活動,求第四、五、六組應(yīng)分別抽取的人數(shù).

)在()中抽取的人中隨機選派人作為領(lǐng)隊,求所選派的人中第五組至少有一人的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點R(x0 , y0)在D:y2=2px上,以R為切點的D的切線的斜率為 ,過Γ外一點A(不在x軸上)作Γ的切線AB、AC,點B、C為切點,作平行于BC的切線MN(切點為D),點M、N分別是與AB、AC的交點(如圖).

(1)用B、C的縱坐標s、t表示直線BC的斜率;
(2)設(shè)三角形△ABC面積為S,若將由過Γ外一點的兩條切線及第三條切線(平行于兩切線切點的連線)圍成的三角形叫做“切線三角形”,如△AMN,再由M、N作“切線三角形”,并依這樣的方法不斷作切線三角形…,試利用“切線三角形”的面積和計算由拋物線及BC所圍成的陰影部分的面積T.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)橢圓的右焦點為,右頂點為已知,其中為坐標原點, 為橢圓的離心率.

(1)求橢圓的方程;

(2)是否存在斜率為2的直線使得當直線與橢圓有兩個不同交點時,能在直線上找到一點,在橢圓上找到一點,滿足?若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《城市規(guī)劃管理意見》中提出“新建住宅原則上不再建設(shè)封閉住宅小區(qū),已建成的住宅小區(qū)和單位大院逐步打開”,此消息在網(wǎng)上一石激起千層浪.各種說法不一而足,為了了解居民對“開放小區(qū)”認同與否,從[25,55]歲人群中隨機抽取了n人進行問卷調(diào)查,得如下數(shù)據(jù):

組數(shù)

分組

認同人數(shù)

認同人數(shù)占
本組人數(shù)比

第一組

[25,30)

120

0.6

第二組

[30,35)

195

p

第三組

[35,40)

100

0.5

第四組

[40,45)

a

0.4

第五組

[45,50)

30

0.3

第六組

[50,55)

15

0.3


(1)完成所給頻率分布直方圖,并求n,a,p.
(2)若從[40,45),[45,50)兩個年齡段中的“認同”人群中,按分層抽樣的方法抽9人參與座談會,然后從這9人中選2名作為組長,組長年齡在[40,45)內(nèi)的人數(shù)記為ξ,求隨機變量ξ的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲乙兩人同時生產(chǎn)內(nèi)徑為的一種零件,為了對兩人的生產(chǎn)質(zhì)量進行評比,從他們生產(chǎn)的零件中各抽出 5 件(單位: ) ,

甲:25.44,25.43, 25.41,25.39,25.38

乙:25.41,25.42, 25.41,25.39,25.42.

從生產(chǎn)的零件內(nèi)徑的尺寸看、誰生產(chǎn)的零件質(zhì)量較高.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)f(x)=(x+1)lnx﹣a(x﹣1).
(1)若函數(shù)f(x)在x=e處的切線與y軸相交于點(0,2﹣e),求a的值;
(2)當1<x<2時,求證:

查看答案和解析>>

同步練習冊答案