lim
n→∞
C
2
n
an2+1
=1
,則實(shí)數(shù)a=
 
分析:
C
2
n
an2+1
=
n(n-1)
2
an2+1
=
n(n-1)
2(an2+1)
,分子分母同時(shí)除以n2可得
1-
1
n
2(a+
1
n2
)
從而可求極限為
1
2a
,結(jié)合已知可得
1
2a
=1
可求a的值
解答:解:∵
lim
n→∞
C
2
n
an2+1
=
lim
n→∞
n(n-1)
2an2+2
=
lim
n→∞
1-
1
n
2a+
2
n2
=
1
2a

∴2a=1   即 a=
1
2

故答案為:
1
2
點(diǎn)評(píng):本題主要考查了極限的求解,解題的關(guān)鍵 是利用組合數(shù)求解Cn2,屬于基礎(chǔ)試題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•奉賢區(qū)一模)我們規(guī)定:對(duì)于任意實(shí)數(shù)A,若存在數(shù)列{an}和實(shí)數(shù)x(x≠0),使得A=a1+a2x+a3x2+…+anxn-1,則稱數(shù)A可以表示成x進(jìn)制形式,簡(jiǎn)記為:A=
.
x\~(a1)(a2)(a3)…(an-1)(an)
.如:A=
.
2\~(-1)(3)(-2)(1)
,則表示A是一個(gè)2進(jìn)制形式的數(shù),且A=-1+3×2+(-2)×22+1×23=5.
(1)已知m=(1-2x)(1+3x2)(其中x≠0)),試將m表示成x進(jìn)制的簡(jiǎn)記形式.
(2)若數(shù)列{an}滿足a1=2,ak+1=
1
1-ak
,k∈N*
,bn=
.
2\~(a1)(a2)(a3)…(a3n-2)(a3n-1)(a3n)
(n∈N*).求證:bn=
2
7
8n-
2
7

(3)若常數(shù)t滿足t≠0且t>-1,dn=
.
t\~(
C
1
n
)(
C
2
n
)(
C
3
n
)…(
C
n-1
n
)(
C
n
n
)
,求
lim
n→∞
dn
dn+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•奉賢區(qū)模擬)我們規(guī)定:對(duì)于任意實(shí)數(shù)A,若存在數(shù)列{an}和實(shí)數(shù)x(x≠0),使得A=a1+a2x+a3x2+…+anxn-1,則稱數(shù)A可以表示成x進(jìn)制形式,簡(jiǎn)記為:A=
.
x\~(a1)(a2)(a3)…(an-1)(an)
.如:A=
.
2\~(-1)(3)(-2)(1)
,則表示A是一個(gè)2進(jìn)制形式的數(shù),且A=-1+3×2+(-2)×22+1×23=5.
(1)已知m=(1-2x)(1+3x2)(其中x≠0),試將m表示成x進(jìn)制的簡(jiǎn)記形式.
(2)若數(shù)列{an}滿足a1=2,ak+1=
1
1-ak
,k∈N*
,bn=
.
2\~(a1)(a2)(a3)…(a3n-2)(a3n-1)(a3n)
(n∈N*),是否存在實(shí)常數(shù)p和q,對(duì)于任意的n∈N*,bn=p•8n+q總成立?若存在,求出p和q;若不存在,說(shuō)明理由.
(3)若常數(shù)t滿足t≠0且t>-1,dn=
.
t\~(
C
1
n
)(
C
2
n
)(
C
3
n
)…(
C
n-1
n
)(
C
n
n
)
,求
lim
n→∞
dn
dn+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:奉賢區(qū)模擬 題型:解答題

我們規(guī)定:對(duì)于任意實(shí)數(shù)A,若存在數(shù)列{an}和實(shí)數(shù)x(x≠0),使得A=a1+a2x+a3x2+…+anxn-1,則稱數(shù)A可以表示成x進(jìn)制形式,簡(jiǎn)記為:A=
.
x\~(a1)(a2)(a3)…(an-1)(an)
.如:A=
.
2\~(-1)(3)(-2)(1)
,則表示A是一個(gè)2進(jìn)制形式的數(shù),且A=-1+3×2+(-2)×22+1×23=5.
(1)已知m=(1-2x)(1+3x2)(其中x≠0),試將m表示成x進(jìn)制的簡(jiǎn)記形式.
(2)若數(shù)列{an}滿足a1=2,ak+1=
1
1-ak
,k∈N*
,bn=
.
2\~(a1)(a2)(a3)…(a3n-2)(a3n-1)(a3n)
(n∈N*),是否存在實(shí)常數(shù)p和q,對(duì)于任意的n∈N*,bn=p•8n+q總成立?若存在,求出p和q;若不存在,說(shuō)明理由.
(3)若常數(shù)t滿足t≠0且t>-1,dn=
.
t\~(
C1n
)(
C2n
)(
C3n
)…(
Cn-1n
)(
Cnn
)
,求
lim
n→∞
dn
dn+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:奉賢區(qū)一模 題型:解答題

我們規(guī)定:對(duì)于任意實(shí)數(shù)A,若存在數(shù)列{an}和實(shí)數(shù)x(x≠0),使得A=a1+a2x+a3x2+…+anxn-1,則稱數(shù)A可以表示成x進(jìn)制形式,簡(jiǎn)記為:A=
.
x\~(a1)(a2)(a3)…(an-1)(an)
.如:A=
.
2\~(-1)(3)(-2)(1)
,則表示A是一個(gè)2進(jìn)制形式的數(shù),且A=-1+3×2+(-2)×22+1×23=5.
(1)已知m=(1-2x)(1+3x2)(其中x≠0)),試將m表示成x進(jìn)制的簡(jiǎn)記形式.
(2)若數(shù)列{an}滿足a1=2,ak+1=
1
1-ak
,k∈N*
,bn=
.
2\~(a1)(a2)(a3)…(a3n-2)(a3n-1)(a3n)
(n∈N*).求證:bn=
2
7
8n-
2
7

(3)若常數(shù)t滿足t≠0且t>-1,dn=
.
t\~(
C1n
)(
C2n
)(
C3n
)…(
Cn-1n
)(
Cnn
)
,求
lim
n→∞
dn
dn+1

查看答案和解析>>

同步練習(xí)冊(cè)答案