【題目】關(guān)于函數(shù),下列說(shuō)法錯(cuò)誤的是( )

A. 是奇函數(shù)

B. 0不是的極值點(diǎn)

C. 上有且僅有3個(gè)零點(diǎn)

D. 的值域是

【答案】C

【解析】分析:利用函數(shù)的奇偶性、極值、零點(diǎn)、值域分析每一個(gè)選項(xiàng)得解.

詳解:對(duì)于選項(xiàng)A,f(-x)=sin(-x)+xcos(-x)=-sinx+xcosx=-(sinx-xcosx)=-f(x),所以函數(shù)f(x)是奇函數(shù),所以選項(xiàng)A是正確的.

對(duì)于選項(xiàng)B,,可以得到函數(shù)f(x)是增函數(shù),在也是增函數(shù),所以0不是函數(shù)的極值點(diǎn),所以選項(xiàng)B正確.

對(duì)于選項(xiàng)C,由于函數(shù)在是增函數(shù),在是增函數(shù),且f(0)=0,所以函數(shù)在 上有且僅有1個(gè)零點(diǎn),所以選項(xiàng)C錯(cuò)誤.

對(duì)于選項(xiàng)D,當(dāng)x時(shí),當(dāng)x時(shí),所以函數(shù)的值域?yàn)镽,所以選項(xiàng)D正確.

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)為橢圓上任意一點(diǎn),直線與圓交于兩點(diǎn),點(diǎn)為橢圓的左焦點(diǎn).

(Ⅰ)求橢圓的離心率及左焦點(diǎn)的坐標(biāo);

(Ⅱ)求證:直線與橢圓相切;

(Ⅲ)判斷是否為定值,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知點(diǎn)P的直角坐標(biāo)為,點(diǎn)M的極坐標(biāo)為,若直線l過(guò)點(diǎn)P,且傾斜角為,圓CM為圓心,1為半徑.

1)求直線l的參數(shù)方程和圓C的極坐標(biāo)方程.

2)設(shè)直線l與圓C相交于AB兩點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐C的底面是正方形,PA⊥平面ABCD,PA=2,∠PDA=45°,點(diǎn)E、F分別為棱AB、PD的中點(diǎn).

(1)求證:AF∥平面PEC

(2)求證:平面PCD⊥平面PEC;

(3)求三棱錐C-BEP的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)為為坐標(biāo)原點(diǎn),是拋物線上異于的兩點(diǎn).

(1)求拋物線的方程;

(2)若直線的斜率之積為,求證:直線過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

)求曲線在點(diǎn)處的切線方程;

)當(dāng)時(shí),求證:函數(shù)有且僅有一個(gè)零點(diǎn);

)當(dāng)時(shí),寫(xiě)出函數(shù)的零點(diǎn)的個(gè)數(shù).(只需寫(xiě)出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從拋物線上任意一點(diǎn)Px軸作垂線段,垂足為Q,點(diǎn)M是線段上的一點(diǎn),且滿足

(1)求點(diǎn)M的軌跡C的方程;

(2)設(shè)直線與軌跡c交于兩點(diǎn),TC上異于的任意一點(diǎn),直線,分別與直線交于兩點(diǎn),以為直徑的圓是否過(guò)x軸上的定點(diǎn)?若過(guò)定點(diǎn),求出符合條件的定點(diǎn)坐標(biāo);若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】科研人員在對(duì)人體脂肪含量和年齡之間關(guān)系的研究中,獲得了一些年齡和脂肪含量的簡(jiǎn)單隨機(jī)樣本數(shù)據(jù),如下表:

根據(jù)上表的數(shù)據(jù)得到如下的散點(diǎn)圖.

(1)根據(jù)上表中的樣本數(shù)據(jù)及其散點(diǎn)圖:

(i)求;

(ii)計(jì)算樣本相關(guān)系數(shù)(精確到0.01),并刻畫(huà)它們的相關(guān)程度.

(2)若y關(guān)于x的線性回歸方程為,求的值(精確到0.01),并根據(jù)回歸方程估計(jì)年齡為50歲時(shí)人體的脂肪含量。

附:參考數(shù)據(jù):

參考公式:相關(guān)系數(shù)

回歸方程中斜率和截距的最小二乘估計(jì)公式分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓是長(zhǎng)軸的一個(gè)端點(diǎn),弦過(guò)橢圓的中心O,點(diǎn)C在第一象限,且,.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)P、Q為橢圓上不重合的兩點(diǎn)且異于AB,若的平分線總是垂直于x軸,問(wèn)是否存在實(shí)數(shù),使得?若不存在,請(qǐng)說(shuō)明理由;若存在,求的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案