【題目】已知拋物線的焦點為,為坐標(biāo)原點,是拋物線上異于的兩點.
(1)求拋物線的方程;
(2)若直線的斜率之積為,求證:直線過定點.
【答案】(1)y2=4x; (2)直線AB過x軸上一定點(8,0).
【解析】
(I)利用拋物線的焦點坐標(biāo),求出,然后求拋物線的方程;(Ⅱ)通過直線的斜率是否存在,設(shè)出直線方程,與拋物線方程聯(lián)立,利用韋達定理以及斜率乘積關(guān)系,轉(zhuǎn)化求解即可.
(Ⅰ)因為拋物線的焦點坐標(biāo)為,所以,所以.
所以拋物線的方程為.
(Ⅱ)證明:①當(dāng)直線的斜率不存在時,設(shè),,
因為直線,的斜率之積為,所以,化簡得.
所以,,此時直線的方程為.
②當(dāng)直線的斜率存在時,設(shè)其方程為,,,
聯(lián)立得化簡得.
根據(jù)根與系數(shù)的關(guān)系得,
因為直線,的斜率之積為,
所以,
即.即,
解得(舍去)或.
所以,即,所以,
即.
綜上所述,直線過軸上一定點.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓的離心率是,一個頂點是.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè),是橢圓上異于點的任意兩點,且.試問:直線是否恒過一定點?若是,求出該定點的坐標(biāo);若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校舉辦校園科技文化藝術(shù)節(jié),在同一時間安排《生活趣味數(shù)學(xué)》和《校園舞蹈賞析》兩場講座.已知兩學(xué)習(xí)小組各有位同學(xué),每位同學(xué)在兩場講座任意選聽一場.若組人選聽《生活趣味數(shù)學(xué)》,其余人選聽《校園舞蹈賞析》;組人選聽《生活趣味數(shù)學(xué)》,其余人選聽《校園舞蹈賞析》.
(1)若從此人中任意選出人,求選出的人中恰有人選聽《校園舞蹈賞析》的概率;
(2)若從兩組中各任選人,設(shè)為選出的人中選聽《生活趣味數(shù)學(xué)》的人數(shù),求的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知且,設(shè)命題:函數(shù)在上單調(diào)遞減,命題:對任意實數(shù),不等式恒成立.
(1)寫出命題的否定,并求非為真時,實數(shù)的取值范圍;
(2)如果命題“”為真命題,且“”為假命題,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=asinx﹣ cosx(a∈R)的圖象經(jīng)過點( ,0).
(1)求f(x)的最小正周期;
(2)若x∈[ , ],求f(x)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)= (a>0,且a≠1)的值域為(﹣∞,+∞),則實數(shù)a的取值范圍是( )
A.(3,+∞)
B.(0, ]
C.(1,3)
D.[ ,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高三一班舉辦消防安全知識競賽,分別選出3名男生和3名女生組成男隊和女隊,每人一道必答題,答對則為本隊得10分,答錯與不答都得0分,已知男隊每人答對的概率依次為 , , ,女隊每人答對的概率都是 ,設(shè)每人回答正確與否相互之間沒有影響,用X表示男隊的總得分.
(I) 求X的分布列及其數(shù)學(xué)期望E(X);
(Ⅱ)求在男隊和女隊得分之和為50的條件下,男隊比女隊得分高的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的方程為,則其長軸長為__________;若為的右焦點, 為的上頂點, 為上位于第一象限內(nèi)的動點,則四邊形的面積的最大值為__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com