【題目】如圖,已知圓,點(diǎn)是圓內(nèi)一個(gè)定點(diǎn),點(diǎn)是圓上任意一點(diǎn),線段的垂直平分線和半徑相交于點(diǎn).當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),點(diǎn)的軌跡為橢圓.
(1)分別為橢圓的左右焦點(diǎn),為橢圓上任意一點(diǎn),若,求的面積;
(2)如圖,若橢圓,橢圓(,且),則稱橢圓是橢圓的倍相似橢圓.已知是橢圓的倍相似橢圓,若橢圓的任意一條切線交橢圓于兩點(diǎn)、,試求弦長的取值范圍.
【答案】(1);(2) .
【解析】
(1)根據(jù)線段中垂線的性質(zhì),可求出的方程為,由橢圓的定義可知,結(jié)合已知條件可求出,又,結(jié)合余弦定理以及同角三角函數(shù)的基本關(guān)系可求出,進(jìn)而可求出三角形的面積.
(2)當(dāng)切線斜率不存在時(shí),可求出;若斜率存在,設(shè)方程為,與聯(lián)立可知,即;與聯(lián)立,結(jié)合韋達(dá)定理、弦長公式可求出,從而可求出弦長的取值范圍.
(1)解:由題意知,圓心,半徑,且,
設(shè)橢圓的方程為,焦點(diǎn)坐標(biāo)為,由橢圓的定義可知,,
解得,所以,所以的方程為.
因?yàn)?/span>為橢圓上任意一點(diǎn),所以,由,可知
,又因?yàn)?/span>,由余弦定理知,
,所以,
則的面積為.
(2)由(1)知,的方程為,即.設(shè).
①若切線垂直于軸,其方程為,不妨設(shè)為,則 ,解得,
所以此時(shí),;同理對(duì)于切線為時(shí),求出.
②若切線不垂直于軸,設(shè)其方程為,,整理得
,則,即();
切線與聯(lián)立得,整理得,
所以,則
.
因?yàn)?/span>,所以,從而.
綜上所述,的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,在四邊形ABCD中,∠ABC=,AB=4,BC=3,CD=,AD=2,PA=4.
(1)證明:CD⊥平面PAD;
(2)求二面角B-PC-D的余弦值..
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的極坐標(biāo)方程與曲線的直角坐標(biāo)方程;
(2)設(shè)、為曲線上位于第一,二象限的兩個(gè)動(dòng)點(diǎn),且,射線,交曲線分別于點(diǎn),.求面積的最小值,并求此時(shí)四邊形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,動(dòng)圓與圓外切,且與直線相切,該動(dòng)圓圓心的軌跡為曲線.
(1)求曲線的方程
(2)過點(diǎn)的直線與拋物線相交于兩點(diǎn),拋物線在點(diǎn)A的切線與交于點(diǎn)N,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,斜率為的直線交拋物線于兩點(diǎn),已知點(diǎn)的橫坐標(biāo)比點(diǎn)的橫坐標(biāo)大4,直線交線段于點(diǎn),交拋物線于點(diǎn).
(1)若點(diǎn)的橫坐標(biāo)等于0,求的值;
(2)求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】矩形中,,,點(diǎn),分別是,上的動(dòng)點(diǎn),將矩形沿所在的直線進(jìn)行隨意翻折,在翻折過程中直線與直線所成角的范圍(包含初始狀態(tài))為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,橢圓的左、右頂點(diǎn)分別為A、B,右焦點(diǎn)為F,且點(diǎn)F滿足,由橢圓C的四個(gè)頂點(diǎn)圍成的四邊形面積為.過點(diǎn)的直線TA,TB與此橢圓分別交于點(diǎn),,其中,,.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)當(dāng)T在直線時(shí),直線MN是否過x軸上的一定點(diǎn)?若是,求出該定點(diǎn)的坐標(biāo);若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在等比數(shù)列中,已知設(shè)數(shù)列的前n項(xiàng)和為,且
(1)求數(shù)列通項(xiàng)公式;
(2)證明:數(shù)列是等差數(shù)列;
(3)是否存在等差數(shù)列,使得對(duì)任意,都有?若存在,求出所有符合題意的等差數(shù)列;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)討論函數(shù)的導(dǎo)函數(shù)的單調(diào)性;
(2)若函數(shù)在處取得極大值,求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com