【題目】矩形中,,,點(diǎn),分別是,上的動點(diǎn),將矩形沿所在的直線進(jìn)行隨意翻折,在翻折過程中直線與直線所成角的范圍(包含初始狀態(tài))為( )
A.B.C.D.
【答案】C
【解析】
根據(jù)題意,可知初始狀態(tài)時直線AD與直線BC所成的角為,當(dāng)與重合時,且當(dāng)時,通過勾股定理的逆定理可得,再利用線面垂直的判定定理和性質(zhì)可證出,即可得出在翻折過程中直線與直線所成角的范圍.
解:由題可知,四邊形是矩形,,
所以初始狀態(tài)時直線與直線所成的角為,
已知矩形中,,,
則,,
由于點(diǎn),分別是,上的動點(diǎn),
當(dāng)點(diǎn),分別在,處時,即與重合時,
翻折過程中,當(dāng)時,如下圖,
則,所以,
又,所以平面,
又因?yàn)?/span>平面,所以,
此時直線與直線所成的角為,
所以在翻折過程中直線與直線所成角的范圍(包含初始狀態(tài))為.
故選:C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,平面平面,四邊形是邊長為4的正方形,,,分別是,的中點(diǎn).
(1)求證:平面;
(2)若直線與平面所成角等于,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).
(Ⅰ)討論單調(diào)性;
(Ⅱ)當(dāng)時,設(shè)函數(shù)存在兩個零點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知圓,點(diǎn)是圓內(nèi)一個定點(diǎn),點(diǎn)是圓上任意一點(diǎn),線段的垂直平分線和半徑相交于點(diǎn).當(dāng)點(diǎn)在圓上運(yùn)動時,點(diǎn)的軌跡為橢圓.
(1)分別為橢圓的左右焦點(diǎn),為橢圓上任意一點(diǎn),若,求的面積;
(2)如圖,若橢圓,橢圓(,且),則稱橢圓是橢圓的倍相似橢圓.已知是橢圓的倍相似橢圓,若橢圓的任意一條切線交橢圓于兩點(diǎn)、,試求弦長的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形的邊長為12,,與交于點(diǎn),將菱形沿對角線折起,得到三棱錐,點(diǎn)是棱的中點(diǎn),.
(1)求證:;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠為生產(chǎn)一種精密管件研發(fā)了一臺生產(chǎn)該精密管件的車床,該精密管件有內(nèi)外兩個口徑,監(jiān)管部門規(guī)定“口徑誤差”的計算方式為:管件內(nèi)外兩個口徑實(shí)際長分別為,標(biāo)準(zhǔn)長分別為則“口徑誤差”為只要“口徑誤差”不超過就認(rèn)為合格,已知這臺車床分晝夜兩個獨(dú)立批次生產(chǎn).工廠質(zhì)檢部在兩個批次生產(chǎn)的產(chǎn)品中分別隨機(jī)抽取40件作為樣本,經(jīng)檢測其中晝批次的40個樣本中有4個不合格品,夜批次的40個樣本中有10個不合格品.
(Ⅰ)以上述樣本的頻率作為概率,在晝夜兩個批次中分別抽取2件產(chǎn)品,求其中恰有1件不合格產(chǎn)品的概率;
(Ⅱ)若每批次各生產(chǎn)1000件,已知每件產(chǎn)品的成本為5元,每件合格品的利潤為10元;若對產(chǎn)品檢驗(yàn),則每件產(chǎn)品的檢驗(yàn)費(fèi)用為2.5元;若有不合格品進(jìn)入用戶手中,則工廠要對用戶賠償,這時生產(chǎn)的每件不合格品工廠要損失25元.以上述樣本的頻率作為概率,以總利潤的期望值為決策依據(jù),分析是否要對每個批次的所有產(chǎn)品作檢測?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)雙曲線的左頂點(diǎn)為D,且以點(diǎn)D為圓心的圓與雙曲線C分別相交于點(diǎn)A、B,如圖所示.
(1)求雙曲線C的方程;
(2)求的最小值,并求出此時圓D的方程;
(3)設(shè)點(diǎn)P為雙曲線C上異于點(diǎn)A、B的任意一點(diǎn),且直線PA、PB分別與x軸相交于點(diǎn)M、N,求證:為定值(其中O為坐標(biāo)原點(diǎn)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線過點(diǎn),其參數(shù)方程為 (為參數(shù),),以為極點(diǎn),軸非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)求已知曲線和曲線交于,兩點(diǎn),且,求實(shí)數(shù)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com