【題目】已知圓C: .
(1)若直線在y軸上的截距為0且不與x軸重合,與圓C交于,試求直線:在x軸上的截距;
(2)若斜率為1的直線與圓C交于D,E兩點,求使面積的最大值及此時直線的方程.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四名同學(xué)各擲骰子5次,分別記錄每次骰子出現(xiàn)的點數(shù),根據(jù)四名同學(xué)的統(tǒng)計結(jié)果,可以判斷出一定沒有出現(xiàn)點數(shù)6的是( )
A.平均數(shù)為3.中位數(shù)為2B.中位數(shù)為3.眾數(shù)為2
C.平均數(shù)為2.方差為2.4D.中位數(shù)為3.方差為2.8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】語文中有回文句,如:“上海自來水來自海上”,倒過來讀完全一樣。數(shù)學(xué)中也有類似現(xiàn)象,如:88,454,7337,43534等,無論從左往右讀,還是從右往左讀,都是同一個數(shù),稱這樣的數(shù)為“回文數(shù)”!
二位的回文數(shù)有11,22,33,44,55,66,77,88,99,共9個;
三位的回文數(shù)有101,111,121,131,…,969,979,989,999,共90個;
四位的回文數(shù)有1001,1111,1221,…,9669,9779,9889,9999,共90個;
由此推測:11位的回文數(shù)總共有_________個.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點A(l,2)在函數(shù)f(x)=ax3的圖象上,則過點A的曲線C:y=f(x)的切線方程是( 。
A. 6x﹣y﹣4=0 B. x﹣4y+7=0
C. 6x﹣y﹣4=0或x﹣4y+7=0 D. 6x﹣y﹣4=0或3x﹣2y+1=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(其中),且曲線在點處的切線垂直于直線.
(1)求的值及此時的切線方程;
(2)求函數(shù)的單調(diào)區(qū)間與極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱中,,,點為棱的中點,點為線段上一動點.
(Ⅰ)求證:當(dāng)點為線段的中點時,平面;
(Ⅱ)設(shè),試問:是否存在實數(shù),使得平面與平面所成銳二面角的余弦值為?若存在,求出這個實數(shù);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時,求函數(shù)在,上的最大值;
(Ⅱ)討論函數(shù)的零點的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】楊輝三角,是二項式系數(shù)在三角形中的一種幾何排列。在歐洲,這個表叫做帕斯卡三角形。帕斯卡(1623----1662)是在1654年發(fā)現(xiàn)這一規(guī)律的,比楊輝要遲393年,比賈憲遲600年。右圖的表在我國南宋數(shù)學(xué)家楊輝1261年所著的《詳解九章算法》一書里就出現(xiàn)了,這又是我國數(shù)學(xué)史上的一個偉大成就。如圖所示,在“楊輝三角”中,從1開始箭頭所指的數(shù)組成一個鋸齒形數(shù)列:1,2,3,3,6,4,10,5,…,則此數(shù)列前16項和為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某興趣小組有男生20人,女生10人,從中抽取一個容量為5的樣本,恰好抽到2名男生和3名女生,則
①該抽樣可能是系統(tǒng)抽樣;
②該抽樣可能是隨機(jī)抽樣:
③該抽樣一定不是分層抽樣;
④本次抽樣中每個人被抽到的概率都是.
其中說法正確的為( )
A.①②③B.②③C.②③④D.③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com