橢圓的焦點為數(shù)學公式,過點F1作直線與橢圓相交,被橢圓截得的最短的弦長MN長為數(shù)學公式,△MF2N的周長為20,則橢圓的離心率為


  1. A.
    數(shù)學公式
  2. B.
    數(shù)學公式
  3. C.
    數(shù)學公式
  4. D.
    數(shù)學公式
A
分析:橢圓的離心率e=,根據題目條件,MN的長度為橢圓通徑的長,△MF2N的周長為4a,列方程即可解得a、c的值,進而求得離心率.
解答:解:∵△MF2N的周長=MF1+MF2+NF1+NF2=2a+2a=4a=20,∴a=5,
又由橢圓的幾何性質,過焦點的最短弦為通徑長
∴MN==
∴b2=16,c2=a2-b2=9,
∴c=3
∴e==,
故選A.
點評:本題主要考查了橢圓的定義,橢圓的幾何性質,此類型題目要求我們應掌握橢圓中特殊的線段的長度,如通徑等.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓C的中心為原點,點F(1,0)是它的一個焦點,直線l過點F與橢圓C交于A,B兩點,且當直線l垂直于x軸時,OA•OB=
56

(Ⅰ)求橢圓C的方程;
(Ⅱ)是否存在直線l,使得在橢圓C的右準線上可以找到一點P,滿足△ABP為正三角形.如果存在,求出直線l的方程;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•日照一模)已知長方形EFCD,|EF|=2,|FC|=
2
2
.以EF的中點O為原點,建立如圖所示的平面直角坐標系xOy.
(Ⅰ)求以E,F(xiàn)為焦點,且過C,D兩點的橢圓的標準方程;
(Ⅱ)在(I)的條件下,過點F做直線l與橢圓交于不同的兩點A、B,設
FA
FB
,點T坐標為(2,0),若λ∈[-2,-1],求|
TA
+
TB
|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2008年普通高等學校招生全國統(tǒng)一考試(福建卷)、數(shù)學(理) 題型:044

如圖、橢圓的一個焦點是F(1,0),O為坐標原點.

(Ⅰ)已知橢圓短軸的兩個三等分點與一個焦點構成正三角形,求橢圓的方程;

(Ⅱ)設過點F的直線l交橢圓于AB兩點.若直線l繞點F任意轉動,值有|OA|2+|OB|2|AB|2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2013年普通高等學校招生全國統(tǒng)一考試天津卷文數(shù) 題型:044

設橢圓=1(a>b>0)的左焦點為F,離心率為,過點F且與x軸垂直的直線被橢圓截得的線段長為

(Ⅰ)求橢圓的方程;

(Ⅱ)設A,B分別為橢圓的左右頂點,過點F且斜率為k的直線與橢圓交于C,D兩點.若··=8,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源:2013年普通高等學校招生全國統(tǒng)一考試天津卷理數(shù) 題型:044

設橢圓的左焦點為F,離心率為,過點F且與x軸垂直的直線被橢圓截得的線段長為

(Ⅰ)求橢圓的方程;

(Ⅱ)設A,B分別為橢圓的左右頂點,過點F且斜率為k的直線與橢圓交于C,D兩點.若··=8,求k的值.

查看答案和解析>>

同步練習冊答案