【題目】已知平面向量 , , 滿足| |= ,| |=1, =﹣1,且 ﹣ 與 ﹣ 的夾角為 ,則| |的最大值為( )
A.
B.2
C.
D.4
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校將從4名男生和4名女生中選出4人分別擔(dān)任辯論賽中的一、二、三、四辯手,其中男生甲不適合擔(dān)任一辯手,女生乙不適合擔(dān)任四辯手.現(xiàn)要求:如果男生甲入選,則女生乙必須入選.那么不同的組隊(duì)形式有_________種.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在[0,+∞)上的函數(shù)f(x)滿足:①當(dāng)x∈[1,2)時, ;②x∈[0,+∞)都有f(2x)=2f(x).設(shè)關(guān)于x的函數(shù)F(x)=f(x)﹣a的零點(diǎn)從小到大依次為x1 , x2 , x3 , …xn , …,若 ,則x1+x2+…+x2n= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(題文)如圖,有一塊半橢圓形鋼板,其長半軸長為,短半軸長為,計劃將此鋼板切割成等腰梯形的形狀,下底是半橢圓的短軸,上底的端點(diǎn)在橢圓上,梯形面積為.
(1)當(dāng),時,求梯形的周長(精確到);
(2)記,求面積以為自變量的函數(shù)解析式,并寫出其定義域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)y=sinx的圖象向右平移 個單位,再將所得函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),得到函數(shù)y=sin(ωx+φ),(ω>0,|φ|< )的圖象,則( )
A.ω=2,φ=﹣
B.ω=2,φ=﹣
C.ω= ,φ=﹣
D.ω= ,φ=﹣
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長度單位.若直線的參數(shù)方程為為參數(shù)),曲線的極坐標(biāo)方程為.
(I)求直線的普通方程與曲線的直角坐標(biāo)方程;
(II)設(shè)直線與曲線相交于兩點(diǎn),若點(diǎn)的直角坐標(biāo)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用0,1,2,3,4五個數(shù)字組成五位數(shù).
(1)求沒有重復(fù)數(shù)字的五位數(shù)的個數(shù);
(2)求沒有重復(fù)數(shù)字的五位偶數(shù)的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , Sn=n2+2n,bn=anan+1cos(n+1)π,數(shù)列{bn} 的前n項(xiàng)和為Tn , 若Tn≥tn2對n∈N*恒成立,則實(shí)數(shù)t的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)F為橢圓 的左焦點(diǎn),且兩焦點(diǎn)與短軸的一個頂點(diǎn)構(gòu)成一個等邊三角形,直線 與橢圓E有且僅有一個交點(diǎn)M. (Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)直線 與y軸交于P,過點(diǎn)P的直線與橢圓E交于兩不同點(diǎn)A,B,若λ|PM|2=|PA||PB|,求實(shí)數(shù)λ的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com