13.如圖,平面PAD⊥平面ABCD,四邊形ABCD為正方形,∠PAD=90°,且PA=AD=2,E,F(xiàn)分別是線段PA,CD的中點,則異面直線EF與BD所成角的余弦值為$\frac{\sqrt{3}}{6}$.

分析 根據(jù)題意,取BC的中點M,連接EM、FM,則FM∥BD,分析可得則∠EFM(或其補角)就是異面直線EF與BD所成的角;進而可得EM、EF的值,在△MFE中,有余弦定理可得cos∠EFM的值,即可得答案.

解答 解:如圖:取BC的中點M,連接EM、FM,則FM∥BD,
則∠EFM(或其補角)就是異面直線EF與BD所成的角;
∵平面PAD⊥平面ABCD,ABCD為正方形,∠PAD=90°,且PA=AD=2,
∴EM=$\sqrt{E{A}^{2}+A{M}^{2}}$=$\sqrt{E{A}^{2}+A{B}^{2}+B{M}^{2}}$=$\sqrt{6}$,
同理EF=$\sqrt{6}$;
在△MFE中,cos∠EFM=$\frac{E{F}^{2}+F{M}^{2}-E{M}^{2}}{2EF•FM}$=$\frac{\sqrt{3}}{6}$;
即異面直線EF與BD所成角的余弦值為$\frac{\sqrt{3}}{6}$;
故答案為:$\frac{\sqrt{3}}{6}$.

點評 本題考查異面直線所成角的求法,考查學生的空間想象能力,關鍵是找到異面直線所成角,屬于基礎題

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

1.已知橢圓$C:\frac{x^2}{4}+\frac{y^2}{b^2}=1(\frac{{2\sqrt{3}}}{3}<b<2)$,動圓P:${(x-{x_0})^2}+{(y-{y_0})^2}=\frac{4}{3}$(圓心P為橢圓C上異于左右頂點的任意一點),過原點O作兩條射線與圓P相切,分別交橢圓于M,N兩點,且切線長的最小值為$\frac{{\sqrt{6}}}{3}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)求證:△MON的面積為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=ax2+bx+c(a>0,b∈R,c∈R).
(1)若函數(shù)f(x)的最小值是f(-1)=0,且c=1,F(xiàn)(x)=$\left\{\begin{array}{l}{f(x)x>0}\\{-f(x)x<0}\end{array}\right.$,求F(2)+F(-2)的值;
(2)若a=1,c=0,且|f(x)|≤1在區(qū)間(0,1]恒成立,試求b取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.若直線ax-y=0(a≠0)與函數(shù)$f(x)=\frac{{2{{cos}^2}x+1}}{{ln\frac{2+x}{2-x}}}$圖象交于不同的兩點A,B,且點C(6,0),若點D(m,n)滿足$\overrightarrow{DA}+\overrightarrow{DB}=\overrightarrow{CD}$,則m+n=( 。
A.1B.2C.3D.a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)$f(x)=\frac{3x}{2x+3}$,數(shù)列{an}滿足a1=1,an+1=f(an),n∈N*,
(1)求a2,a3,a4的值;
(2)求證:數(shù)列$\left\{{\frac{1}{a_n}}\right\}$是等差數(shù)列;
(3)設數(shù)列{bn}滿足bn=an-1•an(n≥2),b1=3,Sn=b1+b2+…+bn,若${S_n}<\frac{m-2015}{2}$對一切n∈N*成立,求最小正整數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點為F1,F(xiàn)2,設點F1,F(xiàn)2與橢圓短軸的一個端點構成斜邊長為4的直角三角形.
(1)求橢圓C的標準方程;
(2)設A,B,P為橢圓C上三點,滿足$\overrightarrow{OP}$=$\frac{3}{5}$$\overrightarrow{OA}$+$\frac{4}{5}$$\overrightarrow{OB}$,記線段AB中點Q的軌跡為E,若直線l:y=x+1與軌跡E交于M,N兩點,求|MN|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{{\sqrt{3}}}{2}$,左,右焦點分別為F1,F(xiàn)2,以原點為圓心,橢圓C的短半軸長為半徑的圓與直線$x-y+\sqrt{2}=0$相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若不過原點且斜率存在的直線l交橢圓C于點G,H,且△OGH的面積為1,線段GH的中點為P,在x軸上是否存在關于原點對稱的兩個定點M,N,使得直線PM,PN的斜率之積為定值?若存在,求出兩定點M,N的坐標和定值的大小;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.設函數(shù)f(x)=ex-|ln(-x)|的兩個零點為x1,x2,則( 。
A.x1x2<0B.x1x2=1C.x1x2>1D.0<x1x2<1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖,等邊三角形ABC與等腰直角三角形DBC公共邊BC,BC=$\sqrt{2}$,DB=DC,AD=$\sqrt{3}$.
(1)求證:BC⊥AD;
(2)求點B到平面ACD的距離.

查看答案和解析>>

同步練習冊答案